今日更新:Composite Structures 4 篇,Composites Part A: Applied Science and Manufacturing 1 篇,Composites Part B: Engineering 3 篇,Composites Science and Technology 3 篇
A temperature-sensitive actuator based on AG/NIPAM delignification wood-based hydrogel
Jiuming Xiong, Ranran Wu, Yufang Hu, Zhiyong Guo, Sui Wang, Jie Mao
doi:10.1016/j.compstruct.2024.118580
一种基于AG/NIPAM脱木质素木基水凝胶的温度敏感执行器
Hydrogels are important in smart drive materials because of their stretchability and biocompatibility. However, challenges in their mechanical properties and preparation process as actuators hinder their potential applications. In this work, a double-layer composite hydrogel actuator was proposed. The actuator consists of two layers of materials, namely delignification wood and agarose (AG)/poly(N-isopropylacrylamide) (PNIPAM) composite hydrogel, named as double-layer wood-based hydrogel (BWH). In BWH, due to the large amount of hydroxyl groups on the surface of delignification wood, abundant hydrogen bonds can be formed with the hydrogel layer to ensure the close adhesion of the two layers and achieve stable synergy. At the same time, the delignification wood can give the overall stable structure and predictable bending direction. In addition, BWH has excellent anti-swelling properties, which is due to the double network design of the hydrogel layer and the anti-swelling properties of the delignification wood skeleton itself. Based on the property of BWH sensitive to temperature deformation, its applications in the field of intelligent grasping and fluid valve were studied. This work provides a simple method for the preparation of response actuators and the idea of mechanical enhancement and adjustable deformation direction.
水凝胶因其可拉伸性和生物相容性在智能驱动材料中占有重要地位。然而,它们作为致动器的机械性能和制备工艺方面的挑战阻碍了它们的潜在应用。本文提出了一种双层复合水凝胶致动器。该致动器由两层材料组成,即脱木质素木材和琼脂糖(AG)/聚n -异丙基丙烯酰胺(PNIPAM)复合水凝胶,称为双层木基水凝胶(BWH)。在BWH中,由于脱木质素木材表面有大量的羟基,可以与水凝胶层形成丰富的氢键,保证两层的紧密粘附,实现稳定的协同作用。同时,去木素化木材可以使整体结构稳定,弯曲方向可预测。此外,BWH具有优异的抗膨胀性能,这是由于水凝胶层的双网状设计和脱木质素木骨架本身的抗膨胀性能。基于BWH对温度变形敏感的特性,研究了其在智能抓取和流体阀等领域的应用。该工作为响应驱动器的制备提供了一种简便的方法,并为机械增强和变形方向可调提供了思路。
Multiscale study on compressive failure mechanism of plain woven composites considering stochastic waviness defects
Jie Sun, Hongneng Cai, Yaping Huang, Erjin Yun
doi:10.1016/j.compstruct.2024.118600
考虑随机波纹缺陷的平纹编织复合材料压缩破坏机制的多尺度研究
This work proposes a multiscale correlation algorithm based on structural level to study the compression damage behavior of plain woven composites. The multiscale algorithm includes a homogenization process that establishes the mesoscale constitutive relationship based the mechanical properties of microscopic constituent to derive the macro-mechanical response, and a localization process that constructs a mapping relationship among mesoscale stress, microscale stress and micro-component failure based on the macroscale load. The results of uniaxial compression experiments are used to validate the model. The multiscale model combined with micro-mechanics of failure (MMF) and 3D kinking model accurately predict the effective stiffness, ultimate compressive strength, damage modes and fracture characteristics. With increasing compression load, the matrix damage of yarn, fiber kinking and pure matrix damage successively initiate. Furthermore, the effect of yarn waviness defects deviating from the ideal design on compressive mechanical behavior is parametrically investigated based on the hypothesis of Gaussian distribution for defects. The increase of waviness misalignment angle (the difference between actual and ideal waviness angle) and its dispersion degree reduces the compression modulus and failure strength. Therefore, the influence of stochastic waviness defects on mechanical response cannot be ignored in structural level design and application of woven composites.
提出了一种基于结构层次的多尺度相关算法来研究平纹编织复合材料的压缩损伤行为。多尺度算法包括基于细观构件力学特性建立细观本构关系的均质化过程和基于宏观荷载建立细观应力、细观应力和细观构件破坏映射关系的局部化过程。用单轴压缩实验结果验证了模型的正确性。结合细观破坏力学(MMF)和三维扭结模型的多尺度模型能准确预测有效刚度、极限抗压强度、损伤模式和断裂特征。随着压缩载荷的增大,纱线基体损伤、纤维扭结和纯基体损伤先后发生。此外,基于缺陷的高斯分布假设,参数化研究了偏离理想设计的纱线波纹度缺陷对纱线压缩力学性能的影响。波浪形失向角(实际与理想波浪形角之差)及其弥散度的增大,降低了材料的抗压模量和破坏强度。因此,在机织复合材料的结构水平设计和应用中,随机波纹缺陷对力学响应的影响是不可忽视的。
Shape memory sandwich structure with reprogrammable shape and mechanical properties
Wei Zhao, Chengjun Zeng, Liwu Liu, Jinsong Leng, Yanju Liu
doi:10.1016/j.compstruct.2024.118604
形状记忆夹芯结构,具有可重新编程的形状和机械性能
Sandwich structures are usually used in aerospace and automotive engineering fields. By selecting different core materials and panels, a large number of design strategies are proposed to obtain various types of sandwich structures for various applications. Here, we developed a kind of shape memory sandwich structure using shape memory foam and laminates. The sandwich structure can not only program its shape utilizing SME but also can adjust its mechanical properties by controlling its temperature or shape. The mechanical and thermal–mechanical properties of shape memory laminates, foam and sandwich structure were characterized, respectively. The energy absorption property and bending resistance of the shape memory sandwich structure after being programmed were studied by compression test and drop weight impact test. Shape programmable and mechanical properties adjustable suggest potential applications of this sandwich structure in an adjustable shock-absorbing interface and space deployable structure.
夹层结构通常用于航空航天和汽车工程领域。通过选择不同的芯材和面板,提出了大量的设计策略,以获得不同用途的不同类型的夹层结构。在此,我们开发了一种使用形状记忆泡沫和层压板的形状记忆夹层结构。夹层结构不仅可以利用SME对其形状进行编程,还可以通过控制其温度或形状来调节其力学性能。分别对形状记忆层压板、泡沫和夹层结构的力学性能和热力学性能进行了表征。通过压缩试验和落锤冲击试验,研究了编程后形状记忆夹层结构的吸能性能和抗弯性能。形状可编程,机械性能可调,表明该夹层结构在可调减震界面和空间展开结构中的潜在应用。
Investigation of the dynamic compression behavior of 3D braided composites based on a virtual fiber embedding method
Shengkai Liu, Aoxin Wang, Bicheng Sun, Siqi Liu, Meiqi Hu, Qian Jiang, Liwei Wu
doi:10.1016/j.compstruct.2024.118592
基于虚拟纤维嵌入法的三维编织复合材料动态压缩性能研究
The three-dimensional braided composites (3DBCs) possess a complex spatial structure, which can lead to microscopic deformation of fibers under high-speed impact. This paper proposes a quasi-fiber scale model using virtual fiber-embedded (VFE) method to simulate the impact behavior and failure of 3DBCs. The results reveal that the maximum eccentricity of the VFE model yarn cross-section is 0.318, representing a 194% improvement compared to solid yarns. According to the characteristics of damage, it can be deduced that interactions among fibers play a pivotal role in determining the failure behavior of composites, particularly concerning non-linear changes. The modulus, strength and the time of initial damage rise with an increasing braiding angle, whereas the resin stress, yarn stress, and degree of damage exhibit opposite trends. The stress distribution over the braiding path shows that the main load-bearing component at 20° braiding angles is internal yarns, whereas the surface yarns take precedence at 40°. The maximum deformation of the yarn cross-section always occurs at the center of the shear band, with a maximum eccentricity of 0.456 at 20° braiding angles. The deformation in yarn flexing and cross-section flattening cause an uneven distribution of stress and strain, leading to localized damage and ultimately catastrophic destruction.
三维编织复合材料(3DBCs)具有复杂的空间结构,在高速冲击下会导致纤维的微观变形。本文提出了一种基于虚拟光纤嵌入(VFE)方法的准光纤比例模型来模拟3DBCs的冲击行为和失效。结果表明,VFE模型纱线截面的最大偏心为0.318,比实心纱线提高了194%。根据损伤的特点,可以推断出纤维间的相互作用在决定复合材料的破坏行为中起着关键作用,特别是在非线性变化的情况下。模量、强度和初始损伤时间随编织角度的增大而增大,而树脂应力、纱线应力和损伤程度呈相反趋势。在编织路径上的应力分布表明,在编织角度为20°时,主要承重成分是内部纱,而在编织角度为40°时,表面纱占主导地位。纱线截面的最大变形总是发生在剪切带的中心,在编织角为20°时,最大偏心为0.456。纱线在弯曲和横截面压扁过程中的变形导致应力应变分布不均匀,导致局部损伤,最终造成灾难性破坏。
“Dual-purpose” strategy of achieving fire safety and UV-resistance of polylactic acid
Xinyu Cui, Jinxuan Chen, Weiwen Gu, Jian Liu, Hongfei Li, Xiaoyu Gu, Jun Sun, Sheng Zhang
doi:10.1016/j.compositesa.2024.108485
实现聚乳酸防火安全和抗紫外线的“一箭双飞”策略
Flame-retardant properties are crucial for polylactic acid (PLA) used in packaging, electrical, and agricultural applications. However, PLA is susceptible to degradation from ultraviolet (UV) light, limiting its longevity. This necessitates the development of PLA composites with improved flame-retardant and UV-resistant properties. Here, we synthesized a multifunctional core–shell spherical flame-retardant TA@HPDT, employing tannic acid (TA) for its effective free radical trapping capability. TA@HPDT was incorporated into PLA to enhance fire safety and UV resistance. The PLA-2 % TA@HPDT composite exhibited exceptional flame-retardant efficiency, achieving a UL-94 V-0 rating and a limiting oxygen index of 25.6. Furthermore, the addition of TA@HPDT reduced the peak heat release rate and total heat release by 16.8 % and 16.7 %, respectively. After 100 h of UV aging, the PLA composite retained 93.3 % of its mass, indicating significantly improved UV resistance. This study demonstrates a strategic approach to developing PLA composites that enhance fire performance and extend service life.
阻燃性能对用于包装、电气和农业应用的聚乳酸(PLA)至关重要。然而,PLA易受紫外线(UV)光的降解,限制了它的寿命。这就需要开发具有改进阻燃和抗紫外线性能的聚乳酸复合材料。在此,我们合成了一种多功能核壳球形阻燃剂TA@HPDT,利用单宁酸(TA)有效的自由基捕获能力。TA@HPDT被纳入PLA,以提高消防安全和抗紫外线能力。PLA-2 % TA@HPDT复合材料表现出优异的阻燃效率,达到UL-94 V-0等级和25.6的极限氧指数。此外,TA@HPDT的加入使峰值放热率和总放热率分别降低了16.8 %和16.7 %。经过100 h的UV老化后,PLA复合材料的质量保留率为93.3 %,抗UV性能显著提高。这项研究展示了一种开发PLA复合材料的战略方法,可以提高防火性能和延长使用寿命。
Study on the fracture behavior and toughening mechanisms of continuous fiber reinforced Wf/Y2O3/W composites fabricated via powder metallurgy
Rui Shu, Yiran Mao, Alvaro Martinez-Pechero, Jan W. Coenen, Alexis Terra, Stephan Schönen, Johann Riesch, Christian Linsmeier, Christoph Broeckmann
doi:10.1016/j.compositesb.2024.111845
粉末冶金连续纤维增强Wf/Y2O3/W复合材料断裂行为及增韧机理研究
Tungsten (W) is a promising candidate material for the plasma facing components in fusion reactors. However, it has issues regarding the intrinsic brittleness. Tungsten fiber reinforced tungsten composites (Wf/W) have been developed based on the concept of extrinsic toughening mechanisms and they show a pseudo-ductile behavior during the fracture process. In the present work, continuous fiber reinforced Wf/Y2O3/W composites were fabricated via a powder metallurgy (PM) process, and the microstructure and mechanical properties were characterized. The fracture behavior and toughening mechanisms were analyzed in detail combining the results of experiments and numerical simulation. The Wf/Y2O3/W composites is toughened by multiple mechanisms such as fiber bridging, crack bending and deflection, interface de-bonding and plastic deformation of fiber. The energy dissipation by interface de-bonding can be neglected. However, it is a necessary factor to ensure any extrinsic toughening mechanisms. The main contribution of the energy dissipation while composite failure is the plastic deformation of fibers.
钨(W)是一种很有前途的用于聚变反应堆等离子体面组件的候选材料。然而,它存在固有脆性方面的问题。钨纤维增强钨复合材料(Wf/W)是一种基于外在增韧机制的材料,在断裂过程中表现出伪延性。采用粉末冶金(PM)法制备了连续纤维增强Wf/Y2O3/W复合材料,并对其微观组织和力学性能进行了表征。结合实验和数值模拟结果,对其断裂行为和增韧机理进行了详细分析。Wf/Y2O3/W复合材料通过纤维桥接、裂纹弯曲和挠曲、界面脱粘和纤维塑性变形等多种机制增韧。界面脱键的能量耗散可以忽略不计。然而,这是保证任何外在增韧机制的必要因素。复合材料破坏时能量耗散的主要贡献是纤维的塑性变形。
Enhancing Flame Retardancy in 3D Printed Polyamide Composites Using Directionally Arranged Recycled Carbon Fiber
Shouao Zhu, Bo Xu, Wei Zhao, Gong Wang
doi:10.1016/j.compositesb.2024.111854
利用定向排列的再生碳纤维增强3D打印聚酰胺复合材料的阻燃性
Combining recycled carbon fiber (rCF) and 3D printing technology has shown great potential for fabricating functional prototypes and production parts used in the aerospace and automotive industries. However, it is still a challenge to design flame-retardant 3D printed parts with high mechanical properties and flame-retardant rating. In the work, a flame-retardant polyamide (PA)-based composite for material extrusion 3D printing was prepared by utilization of rCF, polyhedral oligomeric silsesquioxanes (POSS), and 9,10-Dihydro-9-oxa-10-phosphaphenanthrene (DOPO)-based flame retardant. The 3D-printed composites have high thermal stability, mechanical properties, and excellent flame retardancy with a V-0 rating. With the benefits of material extrusion 3D printing, directionally arranged rCF in 3D printed composites could effectively inhibit the fire spread, extend the time to ignition (TTI), reduce the total heat release (THR) and total smoke release (TSR) of 3D printed composites. The directional flame-retardant mechanism is mainly the thermal conductivity mechanism of the condensed phase and the promotion of stable ordered carbon layer formation. It provides a promising path for designing high-performance flame-retardant materials.
将再生碳纤维(rCF)与3D打印技术相结合,在制造航空航天和汽车工业中使用的功能原型和生产部件方面显示出巨大的潜力。然而,设计具有高机械性能和阻燃等级的阻燃3D打印部件仍然是一个挑战。本研究利用rCF、多面体低聚硅氧烷(POSS)和9,10-二氢-9-氧-10-磷菲(DOPO)基阻燃剂制备了一种用于材料挤出3D打印的阻燃聚酰胺(PA)基复合材料。3d打印复合材料具有高热稳定性、机械性能和优异的阻燃性,阻燃等级为V-0。利用材料挤压3D打印的优势,3D打印复合材料中定向排列的rCF可以有效地抑制火势蔓延,延长着火时间(TTI),降低3D打印复合材料的总放热(THR)和总放烟(TSR)。定向阻燃机理主要是凝聚相的导热机理和促进稳定有序碳层的形成。这为设计高性能阻燃材料提供了一条很有前途的途径。
The role of ettringite seeds in enhancing the ultra-early age strength of Portland cement containing aluminum sulfate accelerator
Haochuan Wang, Pan Feng, Xin Liu, Jiashun Shi, Chong Wang, Wei Wang, Hua Li, Jinxiang Hong
doi:10.1016/j.compositesb.2024.111856
钙矾石种子对含硫酸铝促进剂硅酸盐水泥超早龄期强度的提高作用
The ultra-early age strength of shotcrete with Portland cement-based materials in various supporting constructions is crucial for safety and engineering efficiency. However, concerns exist about the low strength and uncertain mechanism when using aluminum sulfate, the main component of most-used alkali-free accelerators. This study addresses these concerns by introducing ettringite seeds into the Portland cement system with aluminum sulfate. Significant improvement in ultra-early age compressive strength of mortar, i.e., 242% at 6 hours and 201% at 8 hours, was achieved by mere 1% seed addition. Analyses of hydration heat, composition and microstructure demonstrate that the ettringite seeds mainly affect the mechanical performance by forming a more prolonged and coarser ettringite skeleton, rather than directly accelerating cement hydration. Such an enhanced skeleton was proved to establish stronger interactions between particles in the Monte Carlo simulations. Additionally, the synergistic effect of the ettringite skeleton and C-S-H gel on ultra-early age strength was also explored. These proposed strengthening mechanisms were verified by the C3S and equivalent CaCO3 systems.
硅酸盐水泥基材料喷射混凝土的超早龄期强度对各种支护结构的安全性和工程效率至关重要。然而,使用硫酸铝作为最常用的无碱促进剂的主要成分时,存在强度低和机理不确定的问题。本研究通过将钙矾石种子引入硫酸铝硅酸盐水泥体系来解决这些问题。仅添加1%的种子即可显著提高砂浆的超早期抗压强度,即在6小时时提高242%,在8小时时提高201%。水化热、成分和微观结构分析表明,钙矾石种子对水泥力学性能的影响主要是通过形成更长、更粗的钙矾石骨架,而不是直接加速水泥水化。在蒙特卡洛模拟中,这种增强骨架被证明在粒子之间建立了更强的相互作用。此外,还探讨了钙矾石骨架与C-S-H凝胶对超早龄期强度的协同作用。C3S和等效CaCO3体系验证了上述强化机制。
Self-assembled nest-like BN skeletons enable polymer composites with high thermal management capacity
Jiangang Zhou, Congzhen Xie, Huasong Xu, Bin Gou, An Zhong, Daoming Zhang, Hangchuan Cai, Chunhui Bi, Licheng Li, Rui Wang
doi:10.1016/j.compscitech.2024.110869
自组装的巢状BN骨架使聚合物复合材料具有高热管理能力
The lagging development of thermally conductive but electrically insulating materials has become a bottleneck problem for the next generation of advanced high-power density electronic devices. Although second-phase reinforced composites are promising materials for addressing thermal management issues, the inherent mechanism of severe phonon scattering at the interphase results in actual thermal conductivity enhancement efficiency far below expectations. Here, we report a high-performance polymer composite with a nest-like interconnected boron nitride skeleton. This nest-like interconnected BN skeleton without mechanical contact can provide high-efficiency and long-distance phonon transport channel, realizing high thermal conductivity of 1.827 W m-1 K-1 in polymer composite with ultra-low content (4.7 vol%). Meanwhile, the EP/ nest-like BS composites possess ideal electrical properties and dimensional stability. In the actual heat dissipation process of LED chips, the optimal composite material as the thermal interface material can display a temperature drop of more than 34.8% compared to neat epoxy, which proves the broad application prospects of this strategy in advanced electronic devices.
导热绝缘材料发展滞后已成为制约下一代先进高功率密度电子器件发展的瓶颈问题。虽然第二相增强复合材料是解决热管理问题的有前途的材料,但其固有的严重声子散射机制导致实际的导热增强效率远低于预期。在这里,我们报道了一种具有巢状互连氮化硼骨架的高性能聚合物复合材料。这种无机械接触的巢状互联BN骨架可提供高效、长距离的声子输运通道,在超低含量(4.7 vol%)的聚合物复合材料中实现1.827 W m-1 K-1的高导热系数。同时,EP/巢状BS复合材料具有理想的电学性能和尺寸稳定性。在LED芯片的实际散热过程中,最优的复合材料作为热界面材料,与纯环氧树脂相比,可以显示出超过34.8%的温度下降,这证明了该策略在先进电子器件中的广泛应用前景。
Lightweight composites derived from carbonized taro stems for microwave energy attenuation and thermal energy storage
Tian Yang, Qing Qi, Li Ma, Tian Li, Jiatong Li, Qian Yang, Fanbin Meng
doi:10.1016/j.compscitech.2024.110874
由碳化芋头茎制成的微波能量衰减和热能储存的轻质复合材料
A novel strategy has been developed for preparing porous carbon materials derived from taro stems, aimed at enhancing electromagnetic wave (EMW) attenuation and thermal energy storage. The materials were synthesized through the carbonization of taro stems to form a porous carbon structure, subsequently enhanced with polyethylene glycol (PEG) containing carbon nanotubes (CNTs) and nickel (Ni) nanoparticles. By adjusting the carbonization temperature and the loading of CNTs and Ni, the resulting carbon materials exhibited exceptional EMW attenuation performance. Specifically, the PC-800 sample demonstrated a remarkable minimum reflection loss of −61.4 dB across the frequency range of 8.2 to 11 GHz, with a low density of 0.054 g/cm³. The PC-1200 sample exhibited EMI SE values of 23.6 dB axially and 21.5 dB radially in the X-band, with an ultra-low density of 0.033 g/cm³. Further enhancements were observed in the PC/CNT2 and PC/CNT2-Ni15 composites, achieving EMI SE values of 26.3 dB and 26.8 dB, respectively. Additionally, these composites exhibited effective thermal energy storage and release, as confirmed by heating experiments. This study not only introduces a method for creating absorption-dominated biomass electromagnetic shielding materials but also provides a dual-functional solution for enhancing the performance of electronic devices.
以芋头茎为原料制备多孔碳材料,以增强电磁波衰减和热能储存能力。该材料通过对芋头茎进行碳化制备,形成多孔碳结构,随后用含碳纳米管(CNTs)和镍(Ni)纳米颗粒的聚乙二醇(PEG)增强。通过调整炭化温度和碳纳米管和Ni的负载,得到的碳材料表现出优异的EMW衰减性能。具体而言,PC-800样品在8.2至11 GHz的频率范围内显示出- 61.4 dB的最小反射损耗,密度低至0.054 g/cm³。PC-1200样品在x波段的EMI SE值为轴向23.6 dB,径向21.5 dB,超低密度为0.033 g/cm³。PC/CNT2和PC/CNT2- ni15复合材料的EMI SE值进一步增强,分别达到26.3 dB和26.8 dB。此外,加热实验证实,这些复合材料表现出有效的热能储存和释放。本研究不仅介绍了一种以吸收为主的生物质电磁屏蔽材料的制备方法,而且为提高电子器件的性能提供了一种双功能解决方案。
A Multifunctional Leather Composite with Good Antibacterial and Hygrothermal Management Capabilities
Ping Wang, Caiqing Mo, Yanqing Liu, Ying Jiang, Zhicheng Zhang, Huajun Wu, Guiyu Luo, Yu She, En-Tang Kang, Kai Zhang, Liqun Xu
doi:10.1016/j.compscitech.2024.110875
一种具有良好抗菌和热湿管理能力的多功能皮革复合材料
If not removed in a timely manner, the large amount of sweat produced by overheated human skin can cause thermal discomfort and health problems. Development of fabrics with cooling and dehumidifying capabilities is advantageous to improving the quality of human life. In this work, a natural leather-based Zn-monoethanolamine@lignin (Zn-MEA@lignin-leather) composite fabric with personal hygrothermal management properties was fabricated by infiltrating the permeable 3D network microstructure of the natural leather collagen fiber bundles with adhering moisture-absorbent hydrogel containing photothermal lignin. Due to the efficiency of the composite hydrogel in trapping water molecules, the fabric can promote evaporation of sweat from overheated skin surfaces. Compared to the conventional textiles, the composite leather fabric can reduce the humidity of simulated skin surface by about 40% and accelerate the evaporation of sweat from the skin surface to promote reduction in temperature of the overheated body. Thanks to the good photothermal conversion efficiency of lignin, the hydrated composite fabric exhibits a favorable evaporation regeneration rate (0.498 kg m-2 h-1). In addition, the presence of zinc ions in the coordination complex imparts good antimicrobial efficiency to the composite fabric, with inactivation rates approaching 99.99% for both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Thus, the composite leather fabric holds great promise to personal hygrothermal management and healthcare.
如果不及时清除,人体皮肤过热产生的大量汗液会引起热不适和健康问题。开发具有冷却和除湿功能的织物有利于提高人类的生活质量。在这项工作中,通过将含有光热木质素的粘接吸水水凝胶渗透到天然皮革胶原纤维束的可渗透3D网络微观结构中,制备了具有个人湿热管理性能的天然皮革基Zn-monoethanolamine@lignin (Zn-MEA@lignin-leather)复合织物。由于复合水凝胶捕获水分子的效率,这种织物可以促进汗液从过热的皮肤表面蒸发。与传统纺织品相比,复合皮革织物可使模拟皮肤表面的湿度降低约40%,并加速皮肤表面汗液的蒸发,促进过热身体温度的降低。由于木质素良好的光热转换效率,水合复合织物具有良好的蒸发再生速率(0.498 kg m-2 h-1)。此外,配合物中锌离子的存在使复合织物具有良好的抗菌效率,对金黄色葡萄球菌(S. aureus)和大肠杆菌(E. coli)的灭活率均接近99.99%。因此,复合皮革织物在个人湿热管理和医疗保健方面具有很大的前景。