今日更新:Composite Structures 1 篇,Composites Part A: Applied Science and Manufacturing 2 篇,Composites Part B: Engineering 4 篇
Effect of Three-Dimensional auxetic honeycomb core on behavior of sound transmission loss in shallow sandwich cylindrical shell
Mojtaba Sayad Ghanbari Nezhad, Mehrdad Motavasselolhagh, Roohollah Talebitooti, Fengxian XIN
doi:10.1016/j.compstruct.2024.118624
三维消声蜂窝芯对浅夹层圆柱壳传声损失特性的影响
The primary objective of this research is to examine the sound transmission loss (STL) in a shallow sandwich cylindrical shell featuring a 3D auxetic honeycomb core. Initially, the 3D elasticity theory was employed by applying the state vector method and extracting both local and global transfer matrices to calculate STL relations for the cylindrical shell, including the auxetic honeycomb core. Subsequently, boundary conditions were applied to calculate the unknowns, eventually leading to a relationship for calculating STL within the structure. The derived equations were numerically solved using MATLAB software. The validity of the results obtained using this method was examined by comparing them with the findings of other researchers. Moreover, a comparison was conducted involving a large ratio of the curvature radius to thickness, considering both the auxetic honeycomb core and aluminum with equal mass. The results demonstrate a significant increase in STL when utilizing this auxetic honeycomb core compared to a material with the same mass. Specifically, at a frequency of 2 Hz, a significant enhancement of about 29.44 % in STL is observed when increasing the core thickness from 10.39 mm to 20.39 mm. Furthermore, STL results have been obtained for various thicknesses, radius of curvature, and incident angles.
本研究的主要目的是研究具有三维消声蜂窝芯的浅夹层圆柱壳的声传输损失(STL)。首先,采用三维弹性理论,采用状态向量法,提取局部和全局传递矩阵,计算了包括蜂窝芯在内的圆柱壳的STL关系。随后,应用边界条件计算未知数,最终得到计算结构内部STL的关系。利用MATLAB软件对导出的方程进行了数值求解。用这种方法得到的结果的有效性是通过与其他研究人员的发现进行比较来检验的。同时,考虑等质量的铝材和消声蜂窝芯,在曲率半径与厚度之比较大的情况下进行了对比。结果表明,与相同质量的材料相比,使用这种消声蜂窝芯时,STL显著增加。具体来说,在2 Hz频率下,当岩心厚度从10.39 mm增加到20.39 mm时,STL显著增强约29.44 %。此外,还得到了不同厚度、曲率半径和入射角下的STL结果。
The effect of the Weibull modulus on the shape of the stress–strain curves of thin-ply pseudo-ductile hybrid composites
F. Sheibanian, H. Hosseini-Toudeshky, M. Jalalvand, M.R. Wisnom
doi:10.1016/j.compositesa.2024.108532
威布尔模量对薄层伪韧性混杂复合材料应力-应变曲线形状的影响
This paper presents a numerical approach using ABAQUS CAE scripting to simulate the mechanical response of thin-ply pseudo-ductile hybrid composites. A parametric study demonstrates that interface critical fracture energy is essential for accurately modeling damage mechanisms and mechanical behavior. Correct shear strength identification enables the model to capture experimental observations, including fragmentation and the plateau region in the stress–strain curve. The analysis shows that the mechanical behavior of these composites is largely independent of fragmentation location patterns in the low-strain layer. Results emphasize the significant impact of the Weibull modulus on the stress–strain response, with careful selection leading to strong correlation with experimental data. Notable differences in best-fit Weibull moduli were observed for different materials, with higher values for high modulus carbon fibers.
本文提出了一种利用ABAQUS CAE脚本对薄层伪延性混杂复合材料力学响应进行数值模拟的方法。参数化研究表明,界面临界断裂能是准确模拟损伤机理和力学行为的关键。正确的抗剪强度识别使模型能够捕捉到实验观测结果,包括应力-应变曲线中的破碎和高原区域。分析表明,复合材料的力学行为在很大程度上与低应变层的破碎位置模式无关。结果强调了威布尔模量对应力-应变响应的显著影响,经过精心选择,与实验数据具有较强的相关性。不同材料的最佳拟合威布尔模量存在显著差异,高模量碳纤维的最佳拟合威布尔模量更高。
Analysis of rapid decompression failure in polymer liner of Type IV hydrogen storage vessels using a novel fluid–solid coupling model
Yitao Li, Zhongmin Xiao, Yanmei Zhang, Weiguo Li, Wengang Zhang
doi:10.1016/j.compositesa.2024.108531
基于新型流固耦合模型的IV型储氢容器聚合物内衬快速减压失效分析
Type IV vessels have been developed for hydrogen storage systems, but the rapid decompression failure during the decompression process can lead to the collapse of the liner, significantly reducing the lifespan of the vessels. This study aims to investigate nonlinear buckling behaviors and collapse mechanisms of polymer liner in Type IV hydrogen storage vessels. Considering the intrinsic coupling between hydrogen gas depletion and mechanical behavior of vessels, a fluid–solid coupling model was proposed using the fluid cavity techniques and HyperMesh. Results indicated that the pressure difference generated on the liner is the primary cause leading to the polymer liner collapse. The critical pressure difference significantly increases with the thickness of the liner, while it decreases nonlinearly with the increase in void defect size. Parametric sensitivity analysis highlighted the depth of initial void defect and the liner thickness as two significant influencing factors in the critical decompression rate.
IV型储氢罐已被开发用于储氢系统,但在减压过程中快速减压失败可能导致衬管坍塌,从而大大降低了储氢罐的使用寿命。本研究旨在研究IV型储氢容器中聚合物衬垫的非线性屈曲行为和坍塌机理。考虑到氢气耗尽与容器力学行为之间的内在耦合,采用流体腔技术和HyperMesh技术建立了容器的流固耦合模型。结果表明,尾管上产生的压差是导致聚合物尾管坍塌的主要原因。临界压差随衬垫厚度的增大而显著增大,随空洞缺陷尺寸的增大而非线性减小。参数敏感性分析表明,初始空洞缺陷深度和衬板厚度是影响临界减压率的两个重要因素。
“Borrow-force-attack-force” by multi-scale elastic metamaterial with nonlinear damping
Chao Zhang, Di Zhang, Fujie Yin, Mingjie Guo, Fuyin Ma, Chengjun Wu
doi:10.1016/j.compositesb.2024.111884
具有非线性阻尼的多尺度弹性超材料的“借-力-攻-力”
The powerful energy carried by low-frequency vibration is often challenging to be effectively attenuated using traditional damping materials. If low-frequency vibration can be controlled through the energy carried by the excitation itself, the cost of achieving ultra-wide low-frequency vibration control would be significantly reduced. To this end, this paper constructs a multi-scale elastic metamaterial with nonlinear damping (MEMND) to achieve the efficient suppression of ultra-wide low-frequency vibration through its unique transmission characteristics and the effect of “borrow-force-attack-force” (leveraging the excitation to dampen vibration), which is amplified with increasing external excitation. Theoretical, simulation, and experimental results demonstrate that MEMND can achieve over 10 dB damping enhancement at the expense of losing a small amount of the bandgap effect. It exhibits high sensitivity to external excitation in the low-frequency region, offering a promising opportunity for “borrow-force-attack-force”. This work integrates a natural nonlinear damping element into elastic metamaterials and leverages the nonlinear action mechanism of external excitation, presenting a different approach for nonlinear metamaterial design with potential engineering applications.
低频振动所携带的强大能量往往难以用传统的阻尼材料有效衰减。如果可以通过激励本身携带的能量来控制低频振动,那么实现超宽低频振动控制的成本将大大降低。为此,本文构建了一种具有非线性阻尼的多尺度弹性超材料(MEMND),利用其独特的传输特性和“借-力-攻-力”(利用激励来抑制振动)的效果,并随着外部激励的增加而放大,从而实现对超宽低频振动的有效抑制。理论、仿真和实验结果表明,MEMND可以在损失少量带隙效应的情况下实现10 dB以上的阻尼增强。它在低频区域对外部激励具有很高的灵敏度,为“借-力-攻-力”提供了很好的机会。本研究将自然非线性阻尼元件集成到弹性超材料中,并利用外部激励的非线性作用机制,为具有潜在工程应用价值的非线性超材料设计提供了一种不同的方法。
Cartilage regeneration achieved in photo-crosslinked hyaluronic hydrogel bioactivated by recombinant humanized collagen type III
Yang Xu, Jing Wang, Zhanhong Liu, He Qiu, Lu Song, Shuo Liu, Yajun Tang, Lu Chen, Xing Ma, Kai Zhang, Hai Lin, Xingdong Zhang
doi:10.1016/j.compositesb.2024.111886
重组人源ⅲ型胶原生物活化光交联透明质水凝胶实现软骨再生
Collagen has been extensively investigated as a bioactive material in cartilage tissue engineering. Recombinant humanized collagen type III (rhCol III) possessed excellent biocompatibility and imperative interactions with various cells shows a significant advantage as the starting material of medical devices. To investigate the bioactivation effect of rhCol III in cartilage tissue engineering, methacrylated hyaluronic acid (HA-MA) was prepared and rhCol III was further compounded to establish a photo-crosslinked composite hydrogel (HA-rhCol Ⅲ) platform to study the cartilage regeneration with chondrocytes encapsulated. The results verified that the HA-rhCol III hydrogels could be rapidly formed with stable mechanical properties using the blue light curing system. Meanwhile, the rhCol III could be effectively retained inside the composite hydrogel, which was conducive to maintain its bioactive function for a longer period. In vitro cell experiments confirmed that rhCol III improved the local microenvironment for chondrocytes, which provided abundant adhesion sites and further promoted cell migration, proliferation and differentiation. In vivo results indicated that the composite hydrogels could be conveniently applied to fulfill the cartilage defect in rabbit, and the histological and immunohistological results suggested that cartilage regeneration could be achieved with the application of HA-rhCol Ⅲ composite hydrogels. It could be concluded that the addition of rhCol III could bioactivate the hydrogel and promote the tissue regeneration, showing potential for application in tissue engineering.
胶原蛋白作为一种生物活性材料在软骨组织工程中得到了广泛的研究。重组人源化III型胶原具有良好的生物相容性和与多种细胞的良好相互作用,作为医疗器械的起始材料具有显著的优势。为了研究rhCol III在软骨组织工程中的生物活化作用,制备甲基丙烯酸透明质酸(HA-MA),进一步复配rhCol III,建立光交联复合水凝胶(HA-rhColⅢ)平台,研究软骨细胞包封后的软骨再生。结果表明,蓝光固化体系可以快速形成具有稳定力学性能的HA-rhCol III水凝胶。同时,rhCol III能有效保留在复合水凝胶内部,有利于较长时间保持其生物活性功能。体外细胞实验证实,rhCol III改善了软骨细胞的局部微环境,提供了丰富的粘附位点,进一步促进了细胞的迁移、增殖和分化。体内实验结果表明,复合水凝胶可以方便地用于兔软骨缺损的修复,组织学和免疫组织学结果表明,HA-rhColⅢ复合水凝胶可以实现软骨的再生。由此可见,rhCol III的加入对水凝胶具有生物活化作用,促进了组织再生,在组织工程中具有应用潜力。
Enhancing interfacial locking of the CF and PBPESK resin by in-situ electrochemical deposition of MOF nanoparticles
Wenqi Zhao, Hang Jia, Yue Qiao, Yu Zhang, Junyi Wu, Xigao Jian, Cheng Liu
doi:10.1016/j.compositesb.2024.111888
原位电化学沉积MOF纳米颗粒增强CF和PBPESK树脂的界面锁定
The interfacial bonding of carbon fiber reinforced polymer composites plays a critical role in the overall performance of the composites. Poor interfacial bonding leads to catastrophic damage of composites when subjected to external loads. In this study, three-dimensional (3D) NH2-UiO-66 nanoparticles in-situ synthesis on the carbon fiber (CF) surface using an electrochemical method was achieved facilely and efficiently to enhance the interfacial adhesion of CF/PBPESK composites. The influence of incorporating 3D NH2-UiO-66 nanoparticles into the interphase on the interfacial and mechanical properties of carbon fiber reinforced composites was systematically investigated. The NH2-UiO-66 nanoparticles significantly increased the carbon fibers surface energy. The flexural, interlaminar shear and interfacial shear strength of the N–CF–6min/PBPESK composite were improved by 19 %, 31 %, and 93 %, respectively, compared to the D-CF/PBPESK composite. Furthermore, the interfacial failure mechanism of the composites was investigated. This approach offered a simple and efficient strategy for the in-situ synthesis of interfacial phase characterized by robust mechanical locking effects.
碳纤维增强聚合物复合材料的界面结合对复合材料的整体性能起着至关重要的作用。当复合材料受到外部载荷时,界面粘结不良会导致材料的灾难性损伤。在本研究中,采用电化学方法在碳纤维(CF)表面原位合成了三维(3D) NH2-UiO-66纳米颗粒,以增强CF/PBPESK复合材料的界面附着力。系统研究了界面相中加入三维NH2-UiO-66纳米颗粒对碳纤维增强复合材料界面性能和力学性能的影响。NH2-UiO-66纳米颗粒显著提高了碳纤维的表面能。与D-CF/PBPESK复合材料相比,N-CF-6min /PBPESK复合材料的弯曲强度、层间剪切强度和界面剪切强度分别提高了19%、31%和93%。进一步研究了复合材料的界面破坏机理。该方法为原位合成具有较强机械锁定效应的界面相提供了一种简单有效的方法。
Density Gradient Structure Foams Prepared by Novel Two-step Foaming Strategy: Performance, Simulation and Optimization
Xingyu Jia, Wenyu Zhong, Yichong Chen, Dongdong Hu, Jiayang Sun, Yao Peng, Jiabao Yu, Xiulei Jiang, Ling Zhao
doi:10.1016/j.compositesb.2024.111890
新型两步发泡策略制备密度梯度结构泡沫:性能、模拟与优化
Functional gradient foam materials play a crucial role in meeting the diverse performance and functionality requirements of modern engineering. Density gradients enable the distribution of mechanical, dielectric, and optical properties within materials, exhibiting a gradient representation. However, creating density gradients within foams poses a significant challenge, especially for semi-crystalline polymers. The paper proposed a novel two-step foaming method for preparing polypropylene (PP) foams with density gradient structure (DGS). Initially, a pre-foaming process was conducted to prepare PP pre-foams with uniform structure (US) at low temperatures, followed by a secondary foaming process on partially saturated PP pre-foams to fabricate PP DGS foams. By adjusting the duration of partial saturation time, PP foams with various DGS can be achieved. Compared with the commonly used one-step foaming method and uniform foaming method in the literature, the DGS foams prepared by the two-step foaming method exhibit not only a significant enhancement in mechanical property but also achieve the lowest thermal conductivity, while maintaining comparable and outstanding sound insulation performance. Finally, a comprehensive evaluation model using COMSOL Multiphysics was developed for the DGS foams, providing insights for optimizing foam performance through process enhancements.
功能梯度泡沫材料在满足现代工程对各种性能和功能的要求方面起着至关重要的作用。密度梯度使材料内部的机械、介电和光学特性分布成为可能,呈现出梯度表示。然而,在泡沫中产生密度梯度是一个重大挑战,特别是对于半结晶聚合物。提出了一种制备密度梯度结构(DGS)聚丙烯(PP)泡沫的新型两步发泡方法。首先采用低温预发泡法制备结构均匀(US)的PP预泡沫,然后在部分饱和的PP预泡沫上进行二次发泡法制备PP DGS泡沫。通过调整部分饱和时间的长短,可以得到具有不同DGS的PP泡沫。与文献中常用的一步发泡法和均匀发泡法相比,两步发泡法制备的DGS泡沫不仅力学性能显著增强,而且导热系数最低,同时保持了相当优异的隔声性能。最后,利用COMSOL Multiphysics为DGS泡沫开发了一个综合评估模型,为通过工艺改进优化泡沫性能提供了见解。