首页/文章/ 详情

【新文速递】2024年10月21日复合材料SCI期刊最新文章

17小时前浏览18

   

今日更新:Composite Structures 2 篇,Composites Part A: Applied Science and Manufacturing 5 篇,Composites Part B: Engineering 3 篇

Composite Structures

A homogenized constitutive model for 2D woven composites under finite deformation: Considering fiber reorientation

Dake Wu, Zhangjie Yu, Xinfa Xiong, Ang Peng, Jian Deng, Deng’an Cai, Guangming Zhou, Xinwei Wang

doi:10.1016/j.compstruct.2024.118649

考虑纤维取向的二维编织复合材料有限变形均质本构模型

Two-dimensional (2D) woven composites exhibit excellent mechanical properties along the fiber directions. The mechanical behaviors demonstrate nonlinearity in specific applications. Although plasticity methods can be applied to predict complex behaviors, however, fiber reorientation has been observed during finite deformation, indicating that the fiber directions are no longer along orthotropic material axes when the angle between fibers changes. The angular bisectors of two fiber directions can serve as the orthotropic material axes due to the rotational symmetries even in finite deformation scenarios. This study reports a homogenized nonlinear constitutive model based on the rotational symmetry axes, incorporating plasticity and fiber reorientation phenomena. The plasticity model contains a two-parameter flow potential and power function. Plastic deformations are computed using an explicit method. Fiber reorientation angles are computed both theoretically and numerically. The relationship between mechanical properties and fiber reorientation angles is studied using finite element method (FEM). Due to introduce of a novel approach to determining the strain and stress of 2D woven composites undergoing finite deformation, the proposed model should have potential in engineering predictions.

二维编织复合材料沿纤维方向表现出优异的力学性能。在特定的应用中,力学行为表现出非线性。虽然塑性方法可以用于预测复杂的行为,但是,在有限变形过程中已经观察到纤维的重新取向,这表明当纤维之间的角度改变时,纤维的方向不再沿着正交异性材料轴。即使在有限变形情况下,由于纤维的旋转对称性,两个纤维方向的角平分线也可以作为正交各向异性材料轴。本研究报告了一种基于旋转对称轴的均匀化非线性本构模型,该模型考虑了塑性和纤维重定向现象。塑性模型包含一个双参数流势和幂函数。塑性变形采用显式方法计算。从理论上和数值上计算了光纤重定向角。采用有限元法研究了纤维取向角与力学性能的关系。由于引入了一种新的方法来确定二维编织复合材料在有限变形时的应变和应力,所提出的模型应该具有工程预测的潜力。


Three-dimensional mesoscopic investigation on the dynamic compressive behavior of coral sand concrete with reinforced granite coarse aggregate (GCA)

Ruiqi Guo, Jie Dong, Linjian Ma, Zhilin Long, Fu Xu, Changjun Yin

doi:10.1016/j.compstruct.2024.118650

花岗岩粗骨料加筋珊瑚砂混凝土动态压缩特性的三维细观研究

In the construction of island and reef engineering, coral concrete shows a good application prospect due to its abundant raw materials. However, the porous and fragile mechanical characteristics of coral reefs limit their use as coarse aggregate in the preparation of coral concrete materials. This study utilized hard and dense granite as the coarse aggregate and regarded coral sand concrete as a two-phase composite material consisting of spherical granite coarse aggregate (GCA) and coral mortar. It investigated the enhancement effect of granite on coral concrete from a microscopic perspective. Five 3D mesoscopic models with different GCA contents and randomly distributed aggregates were established to reveal the variation patterns and failure mechanisms of coral sand concrete under impact loading with GCA. The findings demonstrate that the K&C model can effectively simulate the dynamic compression behavior of coral mortar and granite materials. Under the action of a half-sine incident wave, the dynamic compressive strength of the samples increases with the increase in GCA, demonstrating that the addition of GCA can effectively enhance the impact resistance of coral sand concrete. As the content of GCA increases, the sensitivity of the samples to the loading wave amplitude also increases accordingly.

珊瑚混凝土原料丰富,在岛礁工程建设中显示出良好的应用前景。然而,珊瑚礁多孔易碎的力学特性限制了其作为粗骨料在珊瑚混凝土材料制备中的应用。本研究采用坚硬致密的花岗岩作为粗骨料,将珊瑚砂混凝土作为球形花岗岩粗骨料(GCA)与珊瑚砂浆组成的两相复合材料。从微观角度研究了花岗岩对珊瑚混凝土的增强作用。建立了5种不同GCA含量和随机分布骨料的珊瑚砂混凝土三维细观模型,揭示了GCA冲击荷载作用下珊瑚砂混凝土的变化规律和破坏机制。研究结果表明,K&C模型可以有效地模拟珊瑚砂浆和花岗岩材料的动态压缩行为。在半正弦入射波作用下,试件的动抗压强度随GCA的增加而增大,说明GCA的加入可以有效增强珊瑚砂混凝土的抗冲击性。随着GCA含量的增加,试样对加载波幅值的敏感性也相应增加。


Composites Part A: Applied Science and Manufacturing

A “sizing-free” strategy to improve the interfacial property of PEEK/CF composites based on “grafting-bridging” bifunctional diazonium salt

Shengdao Wang, Zhongxin Dong, Siyu Zhong, Yuan Li, LiangLiang Pei, Shuwen Zhang, Han Feng, Guibin Wang

doi:10.1016/j.compositesa.2024.108537

 

基于“接枝-桥接”双功能重氮盐改善PEEK/CF复合材料界面性能的“无施胶”策略

Achieving simple and efficient interfacial modification between carbon fiber and polyether ether ketone (PEEK) has been the pursuit of researchers. In this study, by comparing the nucleophilicity of various aromatic amines, a direct Schiff base reaction with polyether ether ketone (PEEK) has been achieved. Based on this, a “grafting-bridging” bifunctional diazonium salt containing a phenylethylamine structure was designed and synthesized to enhance the interfacial strength through covalent bonding without the use of sizing agents. The diazonium salt was grafted onto the surface of carbon fiber through electrochemical reduction, while the PEEK resin and phenylethylamine could achieve bridging through heat treatment, thus a PEEK/CF interface with enhanced covalent bonds was constructed. The reaction and conversion rate between phenylethylamine and PEEK resin were confirmed through IR and NMR. The successful grafting of the diazonium salt on the carbon fiber was determined through XPS and cyclic voltammetry. The bridging reaction on the surface of carbon fiber was verified through XPS and the use of 6F-PEEK with characteristic elements. As a result, the interfacial shear strength (IFSS) of the modified PEEK/CF interface reached 86.2 MPa, representing a 102.8 % improvement compared to the untreated interface of 42.5 MPa, fully demonstrating the excellent effect of the bifunctional diazonium salt.

实现碳纤维与聚醚醚酮(PEEK)之间简单高效的界面改性一直是研究者的追求。本研究通过比较各种芳香胺的亲核性,实现了与聚醚醚酮(PEEK)的直接席夫碱反应。在此基础上,设计合成了一种含有苯乙胺结构的“接枝-桥接”双功能重氮盐,在不使用施胶剂的情况下,通过共价键增强界面强度。通过电化学还原将重氮盐接枝到碳纤维表面,PEEK树脂与苯乙胺通过热处理实现桥接,从而构建了共价键增强的PEEK/CF界面。通过红外光谱和核磁共振谱证实了苯乙胺与PEEK树脂的反应和转化率。用XPS法和循环伏安法测定了重氮盐在碳纤维上接枝的成功与否。通过XPS和添加特征元素的6F-PEEK验证了碳纤维表面的桥接反应。结果表明,改性后的PEEK/CF界面的界面剪切强度(IFSS)达到86.2 MPa,比未改性的42.5 MPa提高了102.8 %,充分显示了双功能重氮盐的优异效果。


Achieving ultra-high strength in TiB/metastable-β composites via short-process technology

Jiaming Zhang, Jianwen Le, Fu Chen, Yongqiang Ye, Chunyu Shen, Yimin Zhuo, Guangfa Huang, Yuanfei Han, Weijie Lu

doi:10.1016/j.compositesa.2024.108522

通过短工艺技术实现TiB/亚稳态-β复合材料的超高强度

Lightweight titanium alloys with ultra-high strength and reasonable ductility are desirable for aerospace applications. However, titanium alloys typically require cumbersome heat treatment to achieve excellent mechanical properties. Here, ultra-high strength Ti-55531-based composites were fabricated by introducing TiB whiskers using a short process, i.e. melting and isothermal forging. The microstructure evolution during isothermal forging was investigated, TiB whiskers would promote the discontinuous dynamic recrystallization and impede abnormal grain growth, resulting in significant β grain refinement, equiaxialization, and crystal orientation randomization. In addition, uniformly distributed nano-scaled αs lamellae were formed. 2.5 vol% TiB/Ti-55531 achieved a superior strength-plasticity synergy with the ultra-high strength of 1525 ± 4 MPa and elongation of 6.4 %±0.2 %, which were 9.2 % and 12.3 % higher than that of Ti-55531, respectively. The strengthening mechanisms were thoroughly analyzed, providing further insight to simplify the preparation and advance the application of ultra-high strength TMCs via short-process technology.

具有超高强度和合理延展性的轻质钛合金是航空航天应用的理想选择。然而,钛合金通常需要繁琐的热处理才能达到优异的机械性能。采用熔炼等温锻造短工艺,引入TiB晶须制备了超高强度ti -55531基复合材料。结果表明,TiB晶须促进了非连续动态再结晶,阻碍了晶粒的异常生长,导致β晶粒细化、等轴化和取向随机化。形成了均匀分布的纳米级αs片层。2.5 vol% TiB/Ti-55531具有优异的强塑性协同性能,其超高强度为1525 ± 4 MPa,延伸率为6.4 %±0.2 %,分别比Ti-55531高9.2 %和12.3 %。对其强化机理进行了深入分析,为简化超高强度tmc的制备和推进其短工艺应用提供了进一步的见解。


Strong high-density composites from wheat straw

Felix Neudecker, Stefan Veigel, Sabine C. Bodner, Jozef Keckes, Jiri Duchoslav, David Stifter, Wolfgang Gindl-Altmutter

doi:10.1016/j.compositesa.2024.108533

由麦秸制成的高密度复合材料

Wheat straw represents a promising resource for structural materials due to its inherent strength and availability as an underutilized agricultural by-product. However, structural features such as small diameters and a hollow, low-density design, as well as a hydrophobic, waxy surface layer, hinder conventional processing. We present an approach to overcome these hindrances by engineering delignified and densified straw strands into a mechanically strong unidirectional composite material. Wheat straw split into strands along the fiber direction was subjected to water-based and mild alkaline pre-treatments and subsequently densified. As a result, the average tensile strength and modulus of elasticity of straw strands improved to impressive 466 MPa and 26 GPa, respectively. Simultaneously, chemical changes to the surface enabled better adhesive bonding. The resulting unidirectional straw composites exhibited a flexural strength of 190 MPa and an elastic modulus of 20 GPa, well within the range of established wood and bamboo-based materials.

麦秸作为一种未充分利用的农业副产品,由于其固有的强度和可用性,代表了一种有前途的结构材料资源。然而,小直径、中空、低密度设计以及疏水、蜡质表面层等结构特征阻碍了传统的加工。我们提出了一种克服这些障碍的方法,通过工程去木素化和致密化稻草股,使其成为机械强度强的单向复合材料。麦秸沿纤维方向成股,经水基预处理和温和碱性预处理后致密化。结果表明,秸秆股的平均抗拉强度和弹性模量分别提高到令人印象深刻的466 MPa和26 GPa。同时,表面的化学变化使粘合剂粘合效果更好。所得单向秸秆复合材料的抗弯强度为190 MPa,弹性模量为20 GPa,完全符合现有木材和竹基材料的范围。


Insert-injection moulding and post-thermal treatment of hybrid continuous and discontinuous glass-fibre-reinforced polyamide composite products

Jian Wang, Hang Li, Fuhai Li, Chunfeng Fan, Tao Liu, Da Wang

doi:10.1016/j.compositesa.2024.108534

连续和不连续玻璃纤维增强聚酰胺复合材料的插注成型及后热处理

Insert-injection moulding enables direct interfacial bonding of hybrid continuous and discontinuous fibre-reinforced thermoplastic products and simultaneously influences dimension stability and mechanical performance. This study investigates the insert-injection moulding of short-glass-fibre-reinforced polyamide 6 (SGF-PA6) bonded with 8 wt% unidirectional continuous-glass-fibre-reinforced polyamide 6 (CGF-PA6), focusing on the dimensional and mechanical properties of the hybrid CGF-SGF-PA6 products, which are essential for engineering applications. Orthogonal experiments revealed that injection melt temperature and pack pressure significantly impact warping deformation and bending properties. The study found strong correlations between dimensional stability and mechanical strength, with interfacial bonding influencing mechanical strength only. Optimised injection moulding reduced warpage to below 0.1 mm, while increasing bending strength and modulus to 400 MPa and 10 GPa, respectively. Post-thermal treatment further enhanced mechanical properties but led to increased warpage. These findings highlight an integrative control strategy for dimensional and mechanical properties of insert-injection moulded hybrid continuous and discontinuous fibre-reinforced thermoplastic products.

插入-注射成型可以实现连续和不连续纤维增强热塑性复合制品的直接界面粘合,同时影响尺寸稳定性和力学性能。本研究研究了短玻璃纤维增强聚酰胺6 (SGF-PA6)与8wt %单向连续玻璃纤维增强聚酰胺6 (CGF-PA6)粘合的插入-注射成型,重点研究了CGF-SGF-PA6混合产品的尺寸和力学性能,这对工程应用至关重要。正交试验结果表明,注射熔体温度和填充压力对材料的翘曲变形和弯曲性能有显著影响。研究发现尺寸稳定性与机械强度之间存在很强的相关性,界面结合仅影响机械强度。优化后的注塑成型将翘曲量降低到0.1 mm以下,同时将抗弯强度和模量分别提高到400 MPa和10 GPa。热处理后进一步提高了机械性能,但导致翘曲量增加。这些发现强调了插入-注射成型混合连续和不连续纤维增强热塑性塑料制品的尺寸和力学性能的综合控制策略。


Process-structure–property study of 3D-printed continuous fiber reinforced composites

Jin Young Jung, Siwon Yu, Heejin Kim, Eunho Cha, Geun Sik Shin, Su Bin Eo, Sook Young Moon, Min Wook Lee, Michael Kucher, Robert Böhm, Jun Yeon Hwang

doi:10.1016/j.compositesa.2024.108538

3d打印连续纤维增强复合材料的工艺-结构-性能研究

3D-printed fiber-reinforced composites hold many advantages compared to conventional composites in terms of individualization, mass customization, design freedom, and tailoring the composite geometry to load-bearing specifications. Among candidate continuous fibers for reinforcement, basalt fibers (BFs) serve as an eco-friendly alternative with excellent physical and thermal properties. However, the applicability of continuous BFs to be used for 3D-printed polymer composites was rarely addressed in existing literature. Especially, the effects of impregnation density during manufacturing and the influence of local fiber distribution on the fracture behavior of BF-reinforced composites remain unclear. In this study, a solution coating process was employed as a fiber pre-treatment to improve the packing density of BF in a polylactide (PLA) matrix. The effects of the resulting fiber volume fraction (8–31 %) and the local fiber distribution on the tensile fracture mechanisms of 3D printed BF/PLA samples are thoroughly analyzed using three-dimensional X-ray tomography. It was found that at a concentration of 3 wt-%, the coating solution uniformly dispersed optimally between the fibers, resulting in improved impregnation densities of the BF in the PLA matrix. Thus, the resulting composite exhibited a tensile strength of 175 MPa and a Young’s modulus of 6.2 GPa, respectively. A viscoelastic constitutive model incorporating damage is used for property prediction within a composite design framework to be applied to 3D-printed BF/PLA structures. The model is validated with experimental data from tensile tests. The obtained results demonstrate the applicability of eco-friendly BF/PLA composites for 3D printing of industrial high-performance applications with an individualized property profile.

与传统复合材料相比,3d打印纤维增强复合材料在个性化、大规模定制、设计自由度和根据承载规格定制复合材料几何形状方面具有许多优势。在候选的连续增强纤维中,玄武岩纤维(BFs)具有优异的物理和热性能,是一种环保的替代品。然而,现有文献很少涉及连续bf用于3d打印聚合物复合材料的适用性。特别是浸渍密度对bf增强复合材料断裂行为的影响和局部纤维分布的影响尚不清楚。在本研究中,采用溶液包覆工艺作为纤维前处理,以提高BF在聚乳酸(PLA)基体中的堆积密度。利用三维x射线断层扫描技术,深入分析了纤维体积分数(8-31 %)和局部纤维分布对3D打印BF/PLA试样拉伸断裂机制的影响。结果表明,当涂层溶液浓度为3 wt-%时,涂层溶液在纤维间的均匀分散效果最佳,从而提高了BF在PLA基体中的浸渍密度。因此,得到的复合材料的抗拉强度为175 MPa,杨氏模量为6.2 GPa。结合损伤的粘弹性本构模型用于3d打印BF/PLA结构的复合材料设计框架内的性能预测。用拉伸试验数据对模型进行了验证。所获得的结果表明,环保型BF/PLA复合材料具有个性化性能,可用于工业高性能应用的3D打印。


Composites Part B: Engineering

Predicting gaps and overlaps in automated fiber placement composites by measuring sources of manufacturing process variations

Siddharth Pantoji, Christos Kassapoglou, Daniël Peeters

doi:10.1016/j.compositesb.2024.111891

通过测量制造工艺变化的来源来预测自动纤维放置复合材料中的间隙和重叠

Manufacturing variations in the automated fiber placement (AFP) process are one of the causes of gaps and overlaps. These manufacturing variations can be due to robot inaccuracy, tow lateral movement on the roller, tow width variation or tow compaction. An experimental setup was built to measure and investigate these various sources of manufacturing variations and their relative contributions to gap and overlap defects. This setup consisted of a commercial AFP head instrumented with additional sensors. Among all the measured sources of variations, lateral movement of the tow on the compaction roller was the biggest contributor to gaps and overlaps. The distributions of these sources of variations were fit with probability density functions. Random samples from these fits were used to simulate adjacent tows and predict the occurrence of gap and overlap defects. The distribution of predicted gaps correlated closely with the distribution of experimentally measured gaps. Thus, this approach of using statistical information about the sources of manufacturing variations to predict the frequency and magnitude of defects in a layup was validated.

自动纤维铺放(AFP)过程中的制造变化是造成间隙和重叠的原因之一。这些制造变化可能是由于机器人不准确,拖在滚筒上的横向运动,拖宽变化或拖实。建立了一个实验装置来测量和研究这些制造变化的不同来源及其对间隙和重叠缺陷的相对贡献。该装置由一个带有附加传感器的商用AFP头组成。在所有测量的变化源中,束在压实辊上的横向运动是造成间隙和重叠的最大原因。这些变异源的分布用概率密度函数拟合。这些拟合的随机样本被用来模拟相邻的城镇,并预测间隙和重叠缺陷的发生。预测间隙的分布与实验测量间隙的分布密切相关。因此,这种使用关于制造变化来源的统计信息来预测分层中缺陷的频率和大小的方法得到了验证。


The effect of particle toughening layers on the material processibility and forming characteristics of carbon fibre/epoxy prepregs

W.T. Wang, H. Yu, K. Potter, B.C. Kim

doi:10.1016/j.compositesb.2024.111907

颗粒增韧层对碳纤维/环氧预浸料材料可加工性和成形特性的影响

Introducing toughening materials between laminas is a common approach to enhance the interlaminar toughness of composite materials, thereby improving the crack resistance and damage tolerance. Various physical formats of toughening materials, including particles, veils, and mats, have been introduced. However, the incorporation of solid and separately phased tougheners alters not only the mechanical characteristics of prepregs but also their processability during layup and forming. This alteration can lead to unpredictable forming behaviour and the generation of defects during manufacturing, which has not been extensively investigated.In this work, the effect of interleaving tougheners on the forming and consolidation characteristics of carbon/epoxy prepregs was investigated by measuring the interply friction and bulk factor of prepreg stacks incorporating polyamide particle tougheners of various sizes and shapes at the ply interfaces. Additionally, the feasibility of single diaphragm forming without heating by utilising the low friction characteristic of the particle-coated prepreg surface was explored.

在层间引入增韧材料是提高复合材料层间韧性的常用方法,从而提高复合材料的抗裂性和损伤容限。各种物理形式的增韧材料,包括颗粒,面纱和垫,已被介绍。然而,固体增韧剂和分相增韧剂的加入不仅改变了预浸料的力学特性,而且改变了预浸料在铺层和成形过程中的可加工性。这种改变会导致不可预测的成形行为和制造过程中产生的缺陷,这一点尚未得到广泛的研究。在这项工作中,通过测量含有不同尺寸和形状的聚酰胺颗粒增韧剂的预浸料堆的层间摩擦和体积系数,研究了交错增韧剂对碳/环氧预浸料形成和固结特性的影响。此外,利用颗粒涂层预浸料表面的低摩擦特性,探讨了无需加热单膜片成形的可行性。


Plasma-assisted particle deposition manufacturing: Multi-functional integrated superhigh temperature thermal protection coating on niobium alloy

Zhiyun Ye, Shuqi Wang, Yongchun Zou, Guoliang Chen, Shang Yu, Lei Wen, Lina Zhao, Guangxi Zhang, Yaming Wang, Dechang Jia, Yu Zhou

doi:10.1016/j.compositesb.2024.111905

等离子体辅助粒子沉积制造:铌合金多功能集成超高温热防护涂层

Multi-functional integrated thermal protection coating is a promising approach for the high-temperature protection of niobium alloy while facing multiple extremely harsh environments, while hard to avoid the complex/multi-step preparation process. Particularly, a simultaneous demonstration of multi-functional features is still challenging. Herein, a novel HfC-HfO2-MoSi2-Yb2O3 multi-functional layer has been fabricated on the NbSi2 layer surface via plasma-assisted particle deposition manufacturing, endowing the modified silicide-based multilayer composite coating with multiple thermal protective characteristics. The composite coating shows excellent hot corrosion resistance with a corrosion gain of 3.56 mg·cm-2 after 200 h, the intact coating structure after three thermal cycles of fast rise and fall from 25 °C ∼ 1800 °C, and a high thermal emissivity of above 0.9, as well as the good high-temperature oxidation resistance and ablation resistance demonstrated in our previous study. The superior multiple thermal protective characteristics are attributed to the synergistic effects of multi-functional particles. HfC particle provides the anti-ablation skeleton, MoSi2 particle provides more SiO2 glass phase and seals defects, Yb2O3 particle acts as the stabilizer of glass network, and matching vibration absorption of multiphase/multi-chemical bonds endow the high emissivity of coating. Our work paves the new way and provides an inexpensive and environmentally friendly approach for the development of a new class of multi-functional integrated thermal protection materials.

多功能一体化热防护涂层是一种很有前途的铌合金高温防护方法,但面对多种极端恶劣的环境,其制备过程复杂/多步难以避免。特别是,多功能特性的同时演示仍然具有挑战性。本文采用等离子体辅助粒子沉积的方法在NbSi2表面制备了新型HfC-HfO2-MoSi2-Yb2O3多功能层,使改性硅化物基多层复合涂层具有多种热防护特性。复合涂层表现出优异的耐热腐蚀性能,经过200 h的腐蚀增益为3.56 mg·cm-2,在25℃~ 1800℃的快速上升和下降三个热循环后涂层结构完整,热辐射率高于0.9,并具有良好的高温抗氧化性和抗烧蚀性。其优异的多重热防护性能主要归功于多功能颗粒的协同作用。HfC颗粒提供抗烧蚀骨架,MoSi2颗粒提供更多的SiO2玻璃相并密封缺陷,Yb2O3颗粒作为玻璃网络的稳定剂,多相/多化学键的匹配振动吸收赋予了涂层的高发射率。我们的工作为开发一类新型多功能综合热防护材料铺平了新的道路,提供了一种廉价和环保的方法。



来源:复合材料力学仿真Composites FEM
ACTMechanicalDeform振动断裂复合材料非线性化学航空航天农业UGUM理论化机材料机器人控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-11-27
最近编辑:17小时前
Tansu
签名征集中
获赞 5粉丝 0文章 776课程 0
点赞
收藏
作者推荐

【新文速递】2024年10月8日固体力学SCI期刊最新文章

今日更新:International Journal of Solids and Structures 2 篇,Thin-Walled Structures 1 篇International Journal of Solids and StructuresConstitutive modeling of functional fatigue with tension–compression asymmetry for superelastic NiTi shape memory alloyZiheng Wang, Chaofan Feng, Dongjie Jiangdoi:10.1016/j.ijsolstr.2024.113099超弹性NiTi形状记忆合金拉压不对称功能疲劳本构建模Under cyclic loads, superelastic shape memory alloys (SMAs) exhibit stress–strain responses featured by functional fatigue, i.e., degradation of superelasticity and accumulation of irrecoverable deformation as cycling number increases, together with an asymmetry between tensile and compressive responses. Comprehensive understanding and modeling of these material complexities are crucial for the design and analysis of various superelastic SMA structures in practical applications. This work has developed a novel constitutive model based on irreversible thermodynamics to account for functional fatigue with tension–compression asymmetry. A potential function, defined as a weighted sum of two potentials that are calibrated against the tensile and compressive responses respectively, is employed to generate the asymmetric responses, and functional fatigue is represented by degradation of superelastic properties and growth of plastic strain as martensitic transformation accumulates. The model is adopted in numerical simulations for superelastic SMA tubes under cyclic lateral compression, which is experimentally investigated as a model problem. The agreement between simulations and experiments shows the validity and effectiveness of this constitutive modeling. Through additional finite element simulations incorporating this model, the effects of tension–compression asymmetry under cycling and diameter-to-thickness ratio of the tubular geometry upon mechanical responses of laterally compressed SMA tubes are also unveiled.在循环荷载作用下,超弹性形状记忆合金(sma)表现出以功能疲劳为特征的应力应变响应,即随着循环次数的增加,超弹性的退化和不可恢复变形的积累,以及拉伸和压缩响应之间的不对称。对这些材料复杂性的全面理解和建模对于实际应用中各种超弹性SMA结构的设计和分析至关重要。本工作开发了一种基于不可逆热力学的新型本构模型,用于考虑具有拉压不对称的功能疲劳。一个势函数,定义为分别针对拉伸和压缩响应校准的两个势的加权和,用于产生不对称响应,功能疲劳是由超弹性性能的退化和马氏体相变积累的塑性应变的增长来表示的。采用该模型对超弹性SMA管进行了循环侧向压缩的数值模拟,并将其作为模型问题进行了实验研究。仿真结果与实验结果吻合,证明了本构模型的正确性和有效性。通过结合该模型的额外有限元模拟,还揭示了循环下的拉压不对称以及管状结构的直径/厚度比对横向压缩SMA管的力学响应的影响。Magneto-viscoelastic rod model for hard-magnetic soft rods under 3D large deformation: Theory and numerical implementationXin Li, Dingcong Zhang, Jiashen Guan, Ju Liu, Hongyan Yuandoi:10.1016/j.ijsolstr.2024.113101三维大变形下硬磁软棒的磁粘弹性棒模型:理论与数值实现The main purpose of this work is to develop a three-dimensional (3D) viscoelastic rod model for hard-magnetic soft (HMS) rods under large deformation which are widely used active structures in soft robotics. To do so, the Simo’s viscoelasticity theory has been rationally incorporated into the geometrically exact 3D curved rod model. The proposed model includes the deformation modes of axial tension, shear, bending, and torsion, which is applicable to the HMS rods with arbitrarily initial curved and twisted geometries under 3D large deformation. The viscoelastic constitutive equations of the HMS rod in the present formulation are formulated, which include the general relaxation functions. To obtain the expression for the magnetic load, the rotation-based magnetic free energy density is introduced, and the governing equations of the HMS rod with magnetic load and body force are presented. To obtain the numerical implementation, an implicit time integration algorithm that simply extends the generalized-α method for the rotation group, and the corresponding variational formulation and its linearization of the rod model are derived. To validate the model, five numerical examples, including 2D dynamic buckling, 3D static, and 3D dynamic problem are presented. The dynamic problems include the dynamic snap-through behavior of a bistable HMS arch and damped oscillation of a quarter arc cantilever under 3D deformation. The simulation results show good agreement with the results reported in the literature.本文的主要目的是建立大变形硬磁软杆的三维粘弹性杆模型。硬磁软杆是软机器人中广泛应用的主动结构。为此,Simo粘弹性理论被合理地纳入几何精确的三维弯曲杆模型中。该模型包括轴向拉伸、剪切、弯曲和扭转的变形模式,适用于具有任意初始弯曲和扭曲几何形状的HMS杆在三维大变形下的变形模式。建立了含广义松弛函数的HMS杆的粘弹性本构方程。为了得到磁载荷的表达式,引入了基于旋转的磁自由能密度,给出了磁载荷和体力作用下HMS杆的控制方程。为了获得数值实现,推导了一种简单推广旋转群广义-α法的隐式时间积分算法,并推导了相应的杆模型变分公式及其线性化。为了验证该模型的有效性,给出了二维动态屈曲、三维静态屈曲和三维动态屈曲五个数值算例。动力学问题包括双稳态HMS拱的动态贯通行为和四分之一圆弧悬臂梁在三维变形下的阻尼振荡。仿真结果与文献报道的结果吻合较好。Thin-Walled StructuresStudy on the PDDO-based meshfree method in numerical simulation of shell ductile fracture considering a non-local GTN modelLiu Fan, Shi Yang, Hu Yu-meng, Feng Guo-qingdoi:10.1016/j.tws.2024.112521考虑非局部GTN模型的壳韧性断裂数值模拟中基于pddo的无网格方法研究A meshfree method is developed based on the peridynamic differential operator (PDDO) for ductile damage and fracture problems in metal shell structures. The kinematic equations coupled to classical continuum mechanics (CCM) are derived with the motion variables discretized by the PDDO. The elastoplastic and fracture behavior of the material are described by applying the Gurson-Tvergaard-Needleman (GTN) model with shear modification, and the non-local form of the model improves the computational convergence for different modeling scales. The zero-energy model in numerical computations is effectively controlled by introducing an hourglass force based on the average displacement state. The particles contact algorithm and multi-crack visualization algorithm are developed to simulate the fracture of shell structures under collision loads. By comparing with experiments, it is verified that the proposed PDDO-based meshfree method can accurately predict the ductile fracture of shell structures subjected to in-plane and out-of-plane loads.针对金属壳结构的延性损伤和断裂问题,提出了一种基于周动力微分算子(PDDO)的无网格方法。推导了与经典连续介质力学(CCM)耦合的运动方程,并将运动变量用PDDO离散化。采用剪切修正的Gurson-Tvergaard-Needleman (GTN)模型来描述材料的弹塑性和断裂行为,该模型的非局部形式提高了不同建模尺度下的计算收敛性。通过引入基于平均位移状态的沙漏力,有效地控制了数值计算中的零能量模型。提出了颗粒接触算法和多裂纹可视化算法来模拟壳结构在碰撞载荷作用下的断裂。通过与实验对比,验证了所提出的基于pddo的无网格方法能够准确预测壳结构在面内和面外荷载作用下的韧性断裂。来源:复合材料力学仿真Composites FEM

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈