今日更新:Composites Part A: Applied Science and Manufacturing 3 篇,Composites Part B: Engineering 4 篇,Composites Science and Technology 1 篇
Improving strength-ductility synergy of titanium matrix composites containing nitrogen via the introduction of intragranular nano-TiB
Ke Feng, Hongmei Zhang, Xingwang Cheng, Qunbo Fan, Xiaonan Mu, Yanan Sun, Ni Xiong, Hao wang, Hongqiang Duan, Yu Wang
doi:10.1016/j.compositesa.2024.108551
通过引入晶内纳米tib提高含氮钛基复合材料的强度-塑性协同作用
We prepared a titanium matrix composite (TMC) with added boron nitride nanosheets (BNNSs) for strength-ductility trade-off issues. The composite, characterized by in-situ nano-TiB intragranular distribution and trace nitrogen solid solution, was prepared using rapid hot press sintering (FHP) and short-duration hot rolling. During pre-rolling heat preservation, the diffusion of boron and nitrogen resulted in the intragranular distribution of nano-TiB and nitrogen solid solution. The nano-TiB demonstrated excellent load transfer, fracture suppression, and dislocation storage capabilities at both room and high temperatures. Coupled with the nitrogen solid solution, the composite exhibited a significant enhancement in strain hardening effect compared to the titanium matrix. The composite outperformed the titanium matrix in strength and ductility at both room and high temperatures, demonstrating a notable strength-ductility synergy. This work provides a reference for designing TMCs with excellent performance at both room and high temperatures.
为了解决强度与延性的权衡问题,我们制备了一种添加氮化硼纳米片的钛基复合材料(TMC)。采用快速热压烧结(FHP)和短时间热轧法制备了原位纳米tib晶内分布和微量氮固溶体的复合材料。在预轧保温过程中,硼和氮的扩散导致纳米tib和氮固溶体在晶内分布。纳米tib在室温和高温下均表现出优异的载荷传递、断裂抑制和位错存储能力。与钛基相比,氮固溶体对复合材料的应变硬化效果有显著增强。该复合材料在室温和高温下的强度和延展性都优于钛基,表现出显著的强度-延性协同效应。为设计室温和高温下性能优异的tmc材料提供了参考。
Intelligent predicting and monitoring of ultra-high-performance fiber reinforced concrete composites − A review
Dingqiang Fan, Ziao Chen, Yuan Cao, Kangning Liu, Tianyi Yin, Xue-Sen Lv, Jian-Xin Lu, Ao Zhou, Chi Sun Poon, Rui Yu
doi:10.1016/j.compositesa.2024.108555
高性能纤维增强混凝土复合材料智能预测与监测研究综述
Ultra-high-performance fiber reinforced concrete (UHPFRC) is an advanced composite known for its exceptional mechanical properties and durability, playing a vital role in modern civil engineering. The convergence of cutting-edge information technology has propelled UHPFRC into a new era characterized by intelligent advancements. This review explores state-of-the-art advancements in UHPFRC, focusing on two key areas: intelligent prediction methods and monitoring techniques. Current methods for predicting UHPFRC properties are mainly divided into statistical and machine learning (ML) approaches. While statistical methods rely on regression models derived from experimental data, ML techniques leverage artificial intelligence to deliver higher accuracy in predicting UHPFRC properties. The intelligent monitoring methods for UHPFRC structures predominantly include sensor monitoring, visual identity monitoring and self-sensing monitoring. AI aid method can further improve the efficiency of the sensor monitoring. Among these, self-sensing monitoring has good prospects since it can be motivated by the piezoelectric effect of the UHPFRC matrix acting as a sensor for in-situ monitoring. The integration of these intelligent prediction and monitoring systems indicates a significant advancement for UHPFRC, enhancing its capability as an intelligent construction material that supports performance evaluation and structural monitoring during its life cycle.
超高性能纤维增强混凝土(UHPFRC)是一种先进的复合材料,以其优异的力学性能和耐久性而闻名,在现代土木工程中发挥着至关重要的作用。前沿信息技术的融合,推动UHPFRC进入了智能化发展的新时代。本综述探讨了UHPFRC的最新进展,重点关注两个关键领域:智能预测方法和监测技术。目前预测UHPFRC性能的方法主要分为统计方法和机器学习方法。统计方法依赖于来自实验数据的回归模型,而机器学习技术利用人工智能在预测UHPFRC性能方面提供更高的准确性。UHPFRC结构的智能监测方法主要包括传感器监测、视觉识别监测和自感知监测。人工智能辅助方法可以进一步提高传感器监测的效率。其中,利用UHPFRC基体的压电效应作为传感器进行原位监测,具有良好的应用前景。这些智能预测和监测系统的集成标志着UHPFRC的重大进步,增强了其作为智能建筑材料的能力,支持其生命周期内的性能评估和结构监测。
Polyaniline nanoparticles intercalated Ti3C2 MXene reinforced waterborne epoxy nanocomposites for electromagnetic wave absorption and anticorrosion coating applications
Qingsong Zhu, Xinyu Lei, Xiaoqin Zha, Eman Ramadan Elsharkawy, Chenye Ren, Huiyuan Chang, Salah M. El-Bahy, Juanna Ren, Renjie Wang, Zeinhom M. El-Bahy, Zhanhu Guo
doi:10.1016/j.compositesa.2024.108557
聚苯胺纳米粒子插层Ti3C2 MXene增强水性环氧纳米复合材料的电磁波吸收和防腐涂层应用
Ti3C2 MXene (TM) has great application potential in the field of wave absorption and corrosion resistance due to its unique performance, such as high specific surface area, high electrical conductivity, excellent mechanical and good chemical stability. However, it is difficult to obtain uniformly dispersed TM in the resin matrix due to rapid agglomeration behavior. It is difficult to obtain uniformly dispersed Ti3C2 MXene (TM) in the resin matrix due to rapid agglomeration behavior. Heren, a novel method is presented to improve the corrosion protection and dispersion of TM by polymerizing polyaniline (PANI) nanoparticles between layers. The waterborne epoxy (WEP) coating with PANI-TM had high mechanical properties including impact resistance, adhesion, and flexibility and wear resistance. The PANI-TM-WEP composites can effectively absorb more than 90 % of the electromagnetic waves and demonstrate a decreased glass transition temperature of WEP from 128.0 to 107.6 ℃. Moreover, the |Z|0.01Hz value of the PANI-TM0.5 % was 1.2369 × 106 Ω·cm2, which was one order of magnitude larger than WEP coating. The high-performance anticorrosion of PANI intercalated TM coating is attributed to the synergistic effect of impermeable TM nanosheets and passivation effect of PANI. Therefore, PANI-TM is a potential choice for applications in the fields of anticorrosion and microwave absorption.
Ti3C2 MXene (TM)具有高比表面积、高导电性、优异的机械稳定性和良好的化学稳定性等独特性能,在吸波和耐腐蚀领域具有很大的应用潜力。然而,由于其快速的团聚行为,很难在树脂基体中获得均匀分散的TM。由于Ti3C2 MXene (TM)在树脂基体中的快速团聚行为,很难得到均匀分散的Ti3C2 MXene (TM)。本文提出了一种通过层间聚合聚苯胺(PANI)纳米粒子来提高TM防腐蚀性能和分散性的新方法。聚苯胺- tm水性环氧树脂(WEP)涂层具有良好的抗冲击、附着力、柔韧性和耐磨性等力学性能。PANI-TM-WEP复合材料能有效吸收90% %以上的电磁波,并将WEP的玻璃化转变温度从128.0℃降低到107.6℃。pani - tm0.5%涂层的|Z|0.01Hz值为1.2369 × 106 Ω·cm2,比WEP涂层大一个数量级。不透水TM纳米片与聚苯胺的钝化作用协同作用,使聚苯胺嵌层TM涂层具有高性能的防腐性能。因此,聚苯胺- tm在防腐和微波吸收领域具有潜在的应用前景。
Multifunctional Highly Conductive Cellulose Nanopaper with Ordered PEDOT:PSS Alignment Enabled by External Surface Area-Promoted Phase Separation
Ningxin Chen, Sida Xie, Jie Deng, Biao Wang, Shanchen Yang, Zhaohui Wang
doi:10.1016/j.compositesb.2024.111919
具有有序PEDOT的多功能高导电纤维素纳米纸:由外表面积促进相分离使PSS对齐
Integrating cellulose, the most abundant biopolymer on Earth, with PEDOT:PSS, the most commercially available conducting polymer, can create multifunctional conductive nanopapers for sustainable electronics. However, conventional PEDOT:PSS/cellulose composites often exhibit limited conductivity, primarily due to the random distribution of PEDOT and the aggregation of PSS within the cellulose matrix. Herein, we introduce a confined phase separation approach that leverages the inherent physical characteristics of the cellulose substrate to enhance the performance of these composites. By systematically investigating the influence of the external surface area of nanocellulose on PEDOT:PSS coverage and composition evolution, we demonstrate that a higher external surface area ensures uniform PEDOT:PSS coating on nanocellulose networks and facilitates effective PSS removal during secondary doping. This process enhances phase separation and promotes ordered alignment of PEDOT chains along nanocellulose, resulting in an electrical conductivity of up to 252 S cm-1. Such highly conductive nanopapers exhibit exceptional performances in supercapacitors and electromagnetic shielding, achieving an ultrahigh specific electromagnetic shielding effectiveness of 33,122 dB cm2 g⁻1 at only 6 μm thickness. Our study highlights the critical role of cellulose substrate selection at the nanoscale and elucidates the interactions within conducting polymers, offering a promising pathway for developing high-performance, sustainable electronics.
将纤维素(地球上最丰富的生物聚合物)与PEDOT:PSS(最具商业价值的导电聚合物)结合起来,可以为可持续电子产品创造多功能导电纳米纸。然而,传统的PEDOT:PSS/纤维素复合材料通常表现出有限的导电性,主要是由于PEDOT的随机分布和PSS在纤维素基体中的聚集。在这里,我们介绍了一种限制相分离方法,利用纤维素基质的固有物理特性来增强这些复合材料的性能。通过系统地研究纳米纤维素的外表面积对PEDOT:PSS覆盖和组成演变的影响,我们证明了更高的外表面积可以确保纳米纤维素网络上均匀的PEDOT:PSS涂层,并有助于在二次掺杂过程中有效地去除PSS。这一过程增强了相分离,促进了PEDOT链沿纳米纤维素的有序排列,导致电导率高达252 S cm-1。这种高导电性的纳米纸在超级电容器和电磁屏蔽方面表现出优异的性能,在仅6 μm的厚度下实现了33122 dB cm2 g - 1的超高比电磁屏蔽效率。我们的研究强调了纤维素底物选择在纳米尺度上的关键作用,并阐明了导电聚合物内部的相互作用,为开发高性能、可持续的电子产品提供了一条有希望的途径。
Natural loofah sponge inspired 3D printed bionic scaffolds promote personalized bone defect regeneration
Xingyu Gui, Ping Song, Boqing Zhang, Haoyuan Lei, Lina Wu, Jiayi Sun, Rong Tang, Hui Zhang, Yuxiang Qin, Zixuan Su, Jianxun Sun, Zhihe Zhao, Min Han, Wei Wei, Yujiang Fan, Changchun Zhou
doi:10.1016/j.compositesb.2024.111920
受天然丝瓜海绵启发的3D打印仿生支架促进个性化骨缺损再生
Critical-sized bone defects pose serious health concerns for patients. Clinically, the use of functionalized bone implants has emerged as an effective solution. However, the rapid advancement in drug and biomaterials has led to an increasing design cost, triggering discussions in the field about how to efficiently create customized functional bone implants. Inspired by the unique structure of natural loofah sponges that effectively deliver nutrients to seeds, we designed a functionalized bone implant emulating this structure. Drug-release gradients were achieved through the application of different concentrations of hydrogels within the composite scaffold. This approach allowed active substances to be released outwardly during the early stage of bone repair, sustaining a local drug micro-environment within the implant scaffold that promotes angiogenesis and osteogenic differentiation in damaged areas. In vivo experiments showed that our loofah sponge bionic scaffold outperformed traditional hydroxyapatite scaffolds by promoting both bone and vascular regeneration. We expect the design of loofah sponge bionic scaffold could potentially deliver an effective strategy in the development of functionalized bone implants.
严重的骨缺损会给患者带来严重的健康问题。临床上,使用功能化骨植入物已成为一种有效的解决方案。然而,药物和生物材料的快速发展导致了设计成本的增加,引发了该领域关于如何有效地创建定制功能骨植入物的讨论。受天然丝瓜海绵独特结构的启发,我们设计了一种模拟这种结构的功能化骨植入物。通过在复合支架内应用不同浓度的水凝胶来实现药物释放梯度。这种方法允许活性物质在骨修复的早期阶段向外释放,在植入支架内维持局部药物微环境,促进受损区域的血管生成和成骨分化。体内实验表明,丝瓜海绵仿生支架在促进骨和血管再生方面优于传统的羟基磷灰石支架。我们期望丝瓜海绵仿生支架的设计能够为功能化骨植入物的开发提供一种有效的策略。
Exceptional strength-toughness-hardness integrated B4C ceramics with synergistic reinforcement of nano-BN and in-situ ceramic phases
Heng Wang, Yi Zeng, Tianbin Zhu, Yibiao Xu, Yawei Li, Zhengyi Fu
doi:10.1016/j.compositesb.2024.111921
优异的强度-韧性-硬度集成B4C陶瓷与纳米bn和原位陶瓷相的协同增强
Boron carbide (B4C) ceramics with enhanced mechanical properties were fabricated by incorporating nano boron nitride (nano-BN), obtained through high-energy ball milling (HEBM) using ZrO2 balls as the medium, and utilizing the spark plasma sintering (SPS) technique. During the densification process of B4C/nano-BN composite powders, an in-situ reaction between the B4C matrix and ZrO2 resulted in the formation of ZrB2 ceramic phases at 1200-1300 °C. Additionally, the rapid sintering densification temperature of composites is reduced to 1500-1700 °C, approximately 80 °C lower than that required for pure B4C ceramics. Notably, while maintaining a high relative density (99.5%), the Vickers hardness, flexural strength, and fracture toughness of B4C ceramics reinforced with synergistic effects of nano-BN and ZrB2 fabricated at 1750 °C are significantly improved to reach values of 36.8±0.15 GPa, 701±12 MPa, and 5.01±0.13 MPa·m1/2 respectively; representing an increase of 3.5 GPa (10.5%), 225 MPa (47.3%), and 1.72 MPa·m1/2 (52.3%) compared to pure B4C ceramics alone. The multiple reinforcement mechanisms including pinning effects provided by nano-BN and in-situ formed ZrB2 ceramic phases, B4C/ZrB2 grain boundary pressure and intracrystalline pressure within B4C, interlayer dislocations of nano-BN and turbulent layer of B4C/BN boundaries contribute to energy dissipation during fracture processes, such as crack deflection, bridging, propagation hindrance and branching effect; ultimately resulting in exceptional strength-toughness-hardness integrated B4C-based ceramics.
以ZrO2球为介质,采用高能球磨(HEBM)法制备纳米氮化硼(nano- bn),并采用火花等离子烧结(SPS)技术制备了具有增强力学性能的碳化硼(B4C)陶瓷。在B4C/纳米bn复合粉体的致密化过程中,B4C基体与ZrO2在1200 ~ 1300℃发生原位反应,形成ZrB2陶瓷相。此外,复合材料的快速烧结致密化温度降低到1500-1700℃,比纯B4C陶瓷低约80℃。值得注意的是,在保持较高相对密度(99.5%)的同时,在1750℃下制备的纳米bn和ZrB2协同增强的B4C陶瓷的维氏硬度、抗弯强度和断裂韧性显著提高,分别达到36.8±0.15 GPa、701±12 MPa和5.01±0.13 MPa·m1/2;分别比纯B4C陶瓷高3.5 GPa(10.5%)、225 MPa(47.3%)和1.72 MPa·m1/2(52.3%)。纳米BN和原位形成的ZrB2陶瓷相的钉钉效应、B4C/ZrB2晶界压力和B4C内的晶内压力、纳米BN的层间位错和B4C/BN晶界的湍流层等多种强化机制有助于断裂过程中的能量耗散,如裂纹偏转、桥接、扩展阻碍和分支效应;最终产生了卓越的强度-韧性-硬度集成的b4c基陶瓷。
C/C-(Hf0.5Zr0.3Ti0.2)C-W-Cu composites: Long-term ablation resistance based on active-passive protection at 2600 °C
Junjie Xu, Wei Sun, Xiang Xiong, Hongbo Zhang
doi:10.1016/j.compositesb.2024.111889
C/C-(Hf0.5Zr0.3Ti0.2)C- w - cu复合材料:基于2600℃主动式被动防护的长期抗烧蚀性能
Compared with the traditional C/C composites modified by ultra-high-temperature ceramics (C/C-UHTCs), those modified by metal/medium-entropy ceramics have excellent mechanical properties, thermophysical properties, and long-term ablation resistance. These composites have great potential towards improving the high-temperature resistance and service life of thermal protection systems for spacecraft. In this study, a new type of (Hf0.5Zr0.3Ti0.2)C-W-Cu cermet-modified C/C composites (C/C-(Hf0.5Zr0.3Ti0.2)C-W-Cu) was prepared at 1500 °C. Compared with C/C-UHTCs, the bending strength and fracture toughness of C/C-(Hf0.5Zr0.3Ti0.2)C-W-Cu increased by 70% and 110% to 364.25 MPa and 14.64 MPa·m1/2, respectively. Due to the high thermal conductivity of Cu and W, the thermal conductivity of this new composite was 106% higher than that of C/C-(Hf0.5Zr0.3Ti0.2)C (44.26 versus 21.53 W/m·K). Under a high heat flow of 4.18 MW/m2, this material exhibited very low mass and linear ablation rates (−0.163 mg/s and −0.193 μm/s, respectively). Active and passive protection occur during ablation due to the evaporative cooling of Cu, CuO, and WO3 as well as a dense outer oxide layer that inhibits oxygen diffusion. The internal oxide layer forms a Hf-Zr-Ti-C-O framework mingled with Ti-rich Ti-Hf-Zr-C-O and an unoxidised W-Cu structure, effectively reducing the osmotic oxygen content. This work provides a new direction for developing thermal protection materials capable of long-term service in ultra-high-temperature environments.
与传统的超高温陶瓷(C/C- uhtcs)改性的C/C复合材料相比,金属/中熵陶瓷改性的C/C复合材料具有优异的力学性能、热物理性能和长期抗烧蚀性能。这些复合材料在提高航天器热防护系统的耐高温性能和使用寿命方面具有很大的潜力。本研究在1500℃下制备了一种新型(Hf0.5Zr0.3Ti0.2)C- w - cu陶瓷改性C/C复合材料(C/C-(Hf0.5Zr0.3Ti0.2)C- w - cu)。与C/C- uhtcs相比,C/C-(Hf0.5Zr0.3Ti0.2)C- w - cu的抗弯强度和断裂韧性分别提高了70%和110%,分别达到364.25 MPa和14.64 MPa·m1/2。由于Cu和W的高导热系数,该复合材料的导热系数比C/C-(Hf0.5Zr0.3Ti0.2)C (44.26 vs 21.53 W/m·K)高106%。在4.18 MW/m2的高热流下,该材料的质量烧蚀率和线性烧蚀率分别为- 0.163 mg/s和- 0.193 μm/s。由于Cu、CuO和WO3的蒸发冷却以及致密的外层氧化层抑制氧气扩散,在烧蚀过程中发生主动和被动保护。内部氧化层与富钛的Ti-Hf-Zr-C-O混合形成Hf-Zr-Ti-C-O骨架和未氧化的W-Cu结构,有效降低了渗透氧含量。本工作为开发能够在超高温环境下长期使用的热防护材料提供了新的方向。
Layer-by-layer assembling boron nitride/polyethyleneimine/MXene hierarchical sandwich structure onto basalt fibers for high-performance epoxy composites
Ying Yu, Shaolong Han, Haoyu Wang, Gang Wei, Zheng Gu, Ping Han
doi:10.1016/j.compscitech.2024.110931
在玄武岩纤维上逐层组装氮化硼/聚乙烯亚胺/MXene分层夹层结构制备高性能环氧复合材料
Interfacial adhesion directly affects the mechanical properties of basalt fiber (BF)-reinforced polymer composites. To construct a more superior interphase between BFs and epoxy resin (EP) than a weak interphase of the unmodified BF/EP, we propose a hierarchical sandwich structure consisting of sodium hydroxide–activated boron nitride (BNOH), polyethyleneimine (PEI), and MXene (MX, Ti3C2Tx) through facile layer-by-layer self-assembly. The fabricated BNOH/P/MX sandwich structure (P denoting “PEI”) can synergistically improve the interface adhesion by enhancing the mechanical interlocking and chemical bonding of the composites. When the composites reinforced by BF–BNOH/P/MX subject to the external loading, flexible PEI molecules allow two-dimensional (2D) rigid BNOH and MX nanosheets to slip at the interface by uncurling the molecular chains, dissipating a great amount of energy during the fracture progress. Meanwhile, the hierarchical BNOH/P/MX sandwich structure acts as an excellent interface and possesses multistage gradient modulus and wider thickness, uniformly and efficiently transferring the stress from the EP matrix to BFs. The interfacial shear strength, impact strength, and fracture toughness of BF–BNOH/P/MX-reinforced EP composite are substantially improved by 45.9%, 60.6%, and 148.9%, respectively, compared with bare BF–based composites. This study can provide valuable references and inspirations for designing and constructing high-quality interfaces for high-strength and high-toughness BF structural materials, taking advantage of 2D materials.
界面粘附性直接影响玄武岩纤维增强聚合物复合材料的力学性能。为了在BF和环氧树脂(EP)之间构建比未改性BF/EP的弱界面更优越的界面相,我们提出了一种由氢氧化钠活化的氮化硼(BNOH)、聚乙烯亚胺(PEI)和MXene (MX, Ti3C2Tx)组成的分层夹层结构,通过易于层层自组装。制备的BNOH/P/MX夹层结构(P表示“PEI”)可以通过增强复合材料的机械联锁和化学键合来协同提高界面附着力。当BF-BNOH /P/MX增强的复合材料受到外部载荷时,柔性PEI分子通过解开分子链使二维刚性BNOH和MX纳米片在界面处滑动,从而在断裂过程中耗散大量能量。同时,层叠式BNOH/P/MX夹层结构作为一种优良的界面,具有多级梯度模量和更宽的厚度,可以均匀有效地将应力从EP基体传递到bf。与纯bf基复合材料相比,BF-BNOH /P/ mx增强EP复合材料的界面抗剪强度、冲击强度和断裂韧性分别显著提高45.9%、60.6%和148.9%。本研究可为利用二维材料的优势设计和构建高强度、高韧性BF结构材料的高质量界面提供有价值的参考和启示。