首页/文章/ 详情

Ansys Workbench多体接触热分析

1月前浏览1275

在多体接触系统中,由于表面粗糙度影响,两个互相接触的固体表面之间常常充满了空气,热量将以导热的方式穿过这种气隙层,这种情况与固体表面完全接触相比,增加了附加的传递阻力,这个阻力称为接触热阻。

热阻类似于电阻,它是热量在传递时遇到的阻力,单位为K/W。显然热阻越大,物体的导热能力就越差,这和导热系数正好相反。在多个材料组成的系统中,接触热阻定义为界面处的温差与流过该界面的热量之比。
前期文章系统讲解了Ansys Workbench非线性热分热辐射分析热应力分析。本文将介绍Ansys Workbench多体接触热分析,其分析步骤与其它热分析基本一致,只是需要注意设置界面接触热阻。

界面接触热阻的大小,以及接触热阻的设置,在多体系统热分析中至关重要。根据实际界面接触情况,通常采取以下两种手段处理接触热阻。

1) 忽略接触热阻

对于界面光滑平整、完全接触、充分焊接、不关注界面等,忽略接触热阻。双击Geometry进入DM界面,选中所有零件右击选择Form New Part,形成一个多体零件,从而不设置零件接触关系,忽略零件之间的接触热阻。

2) 考虑接触热阻

对于界面粗糙、接触不良、存在间隙、很关注界面等,需要设置零件之间的接触关系和接触热阻。接触热阻与接触热导率成倒数关系,其在Workbench中的设置方法如下所述:

点击接触对Contact,下方面板中设置Advanced的Thermal Conductance为手动Manual,并设置其值大小。当然,也可以不进行设置,保持默认Program Controlled,由程序自行控制接触热导率的值。

常见界面接触热阻如上述两表所示,实际设置时最好通过试验获得,或取界面材料导热系数的平均值,然后再根据接触情况打一折扣。也可以通过仿真不同接触热阻时温度分布情况,并与实际温度进行比对分析,从而确定接触热阻。
来源:纵横CAE
ACTWorkbench非线性焊接材料控制试验ANSYS
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-11-07
最近编辑:1月前
纵横CAE
硕士 签名征集中
获赞 21粉丝 50文章 178课程 0
点赞
收藏
作者推荐

一文搞懂Ansys Workbench热力耦合仿真

在变温条件下工作的结构,通常都存在热应力问题。在正常工况下存在稳态热应力,在启动或关闭过程中存在瞬态热应力。常见结构热应力问题主要分为两类: 1) 工作环境温度变化产生热应力问题;2) 结构传热产生温差形成热应力问题。 热胀冷缩是物体的固有属性。当环境温度发生改变时,结构的连续性或边界条件由于热胀冷缩而产生热应力,主要有以下两方面原因: 1) 约束限制:结构受到某些限制,如位移约束或相反压力,则在结构中产生热应力; 2) 材料差异:材料属性不同而形成不均匀变形,如热膨胀系数不同,则产生热应力。 由约束限制产生热应力 由材料差异产生热应力一般情况下,结构力学响应不会影响热物性、传热方式以及热边界条件,结构热应力问题可以解耦为热分析和结构分析,将热分析的温度分布作为结构分析的输入条件。 结构热应力分析流程 Ansys Workbench热应力分析流程,如下图所示。首先,进行结构热分析,获取温度场分布。然后,将温度作为外载荷,导入到结构力学计算中,从而得到结构热应力热变形。 ANSYS Workbench热应力分析流程 对于简单结构:分析步骤同结构力学分析,只是在添加约束和载荷时,需要增加热载荷,添加方法如下:点击Load,添加ThermalCondition,图形区选择几何单元,点击下方面板Geometry中的Apply,并在Magnitude输入温度。 Ansys Workbench简单结构热应力分析 对于复杂结构:首先进行结构热分析,得到结构温度场分布;然后进行结构力学分析,得到热应力。对于结构分析来说,温度载荷来自热分析,需要导入温度结果,方法如下:展开Imported Load,右击Imported Body Temperature,选择Imported Load。ANSYS Workbench复杂结构热应力分析 减小热变形三大 法宝: 1) 温度控制。热变形是由温差引起的,因此可以通过热控设计,降低结构中的温度梯度,从而减小结构热变形。 玉兔号巡视器散热面布局2) 材料匹配。材料差异导致不均匀胀缩扩大结构热变形,相互接触结构尽量采用热膨胀系数一致且较低的材料。 不同热沉封装器件的热应力3) 柔性支撑。连续结构受到约束时,热应力无法卸载导致热变形,因此采用柔性结构卸载热应力减小热变形。 位移放大柔性机构热变形 注意事项:1)进行热应力分析时,必须输入材料的热膨胀系数。 2)对于热分析而言,网格疏密对温度结果影响不大,但是求解热应力问题时,则需要有较好的网格质量。 3)对于复杂结构热应力问题,温度变化导致结构几何形状发生改变,从而导致热物性、传热方式以及热边界条件发生变化,故应采用热-固耦合分析方法。 4)对于结构瞬态热应力,首先进行瞬态热分析获得不同时间点的结构温度场,然后将这些温度导入到不同载荷步的结构力学计算中,获得瞬态热应力。 来源:纵横CAE

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈