首页/文章/ 详情

面向小偏置碰的轮毂断裂模拟研究

20天前浏览834

本文摘要:(由ai生成)

本文基于CrachFEM断裂准则,通过材料力学试验研究了铸铝轮毂AlSi7的材料参数拟合,对比了轮毂的准静态和动态试验结果与仿真结果。研究发现,CrachFEM材料模型能准确模拟铸铝轮毂在碰撞下的断裂行为,六面体单元相比四面体单元能提高失效模拟精度。同时,考虑铸造缩孔对材料性能的影响,对轮毂中心和轮辋分别定义材料模型,能更可靠地模拟轮毂碰撞断裂现象。该研究为轮毂碰撞安全性能的优化设计提供了重要依据。

0 引言

    随着中国保险汽车安全指数C-IASI的推广,尤其是25%小偏置碰极端恶劣工况的引入,整车碰撞会发生大面积钣金和焊点撕裂,底盘件、轮辋和轮毂断裂等情况。车轮总成作为小偏置碰的重要碰撞力传递路径之一,轮毂(含轮毂中心、轮辐和轮辋)刚度对碰撞结果的影响极大。在小偏置碰工况中,轮毂受到过大的碰撞力会发生断裂失效,现阶段碰撞仿真 主要采用刚性轮毂模拟,这种建模方式不能表征轮毂结构的碰撞断裂和轮胎偏转运动,且刚性轮毂对门槛梁冲击过大时会导致门槛的变形失真,从而影响小偏置碰的仿真精度。目前国内外对轮毂小偏置碰下的断裂失效模拟研究均处于起步阶段,为获得小偏置碰的稳健模拟预测结果,需开展材料特性和失效模型的力学性能研究。为准确地模拟轮毂在碰撞过程中的塑性变形和断裂失效,仿真模拟不仅需要描述材料的弹塑性行为,也要对材料断裂的力学行为进行描述。材料的失效应变与应力状态(可用应力三轴度或应变比描述)和应变率相关,而采用将单轴拉伸试验的断裂延伸率作为失效判据的常应变单元失效方法来描述材料断裂显然是片面的,预测结果是不准确的。

    随着力学理论和有限元模型的发展,出现了更为完善的断裂/韧性失效模型,其中Gurson模型描述了材料失效时成核成孔的现象,从正向断裂失效形成的机理对该现象进行模拟,属于典型的金属正向断裂失效模型,但该模型忽略了剪切断裂失效。CrachFEM模型同时考虑了材料的正向断裂和剪切断裂,根据不同的材料类型(如热成形钢、高强钢、挤压铝、铸铝和塑料等),设计不同种类的材料力学试验来表征正向断裂和剪切断裂特性,可更加全面准确地预测材料的失效。

     本文基于CrachFEM断裂准则,通过材料力学试验研究了铸铝轮毂AlSi7的材料参数拟合,对比了轮毂的准静态和动态试验结果与仿真结果,验证了正向建立的CrachFEM材料卡片在模拟轮毂断裂失效的准确性。

1 铸铝AlSi7材料力学性能试验

    材料的力学性能分为弹塑性和断裂失效两部分,其中材料弹塑性包括塑性硬化和屈服轨迹等。铸铝塑性硬化具有低应变率效应,但拉伸和压缩状态下铸铝应力-应变关系会有差异,需要开展准静态单轴拉伸和压缩试验获得材料的力-位移曲线,并将其转换为等效应力-等效应变关系曲线,如下图所示。

     金属材料从屈服点进入塑性变形,到达抗拉点后发生成核成孔或剪切带滑移,即材料发生了损伤,损伤逐渐累积最终导致材料断裂。失效应变与应力状态有关,因此需要获得不同应力状态下的材料断裂应变。本文设计了5种试验类型,用以代表试验样件5种不同的应力状态,包括圆孔样条三点弯曲试验、宽样条三点弯曲试验、直角开槽样条拉伸试验、剪切试验和穿孔试验,完成试验后依据样件在断口区域的厚度和减薄率来计算该应力状态下的失效应变值。此外,失效应变与应变率的关系非常敏感,为更好地描述不同的应变率下铸铝材料AlSi7的断裂失效特性,本文开展了准静态(应变率为0.001 s-1)和动态(应变率为100 s-1)的材料断裂力学试验。

     下图为铸铝AlSi7经过系统化材料力学试验后的样件图片,为了避免切割温度改变样件材料性能,试验样件直接从轮辋上通过水切割获得。表1所示为5组材料断裂力学试验对应的主应变比和失效模式。通过断口观察发现,试验样件的失效模式主要为正向断裂失效。

2 带失效的铸铝AlSi7材料模型的开发

铸铝材料模型的开发包括塑性应力-应变曲线的拟合、各向异性屈服轨迹的修正、CrachFEM失效准则的参数拟合等。

2.1 铸铝塑性模型的开发

     材料通过单轴拉伸试验而获取的塑性应变一般较小,故需要综合考虑叠层压缩或扭转试验来获取应力-应变曲线,从而确定延伸段曲线的趋势。由图1铸铝拉伸和压缩的等效应力-等效应变曲线可知,材料具有一定的拉压不对称性,将压缩曲线的纵坐标乘以缩放系数0.946后得到修正后的曲线,该曲线与拉伸曲线具有较好的一致性。

    对铸铝材料进行塑性硬化准则的拟合,采用逆向标定方法对硬化段外推进行修正,常用的塑性硬化准则有Swift准则、Ghosh准则和Hocket-Sherby准则。

    图下为基于上述三种塑性硬化准则拟合得到的应力-应变曲线,可以看出,Hocket-Sherby塑性硬化准则更加适用于AlSi7材料。

    图下所示为在各向同性von Mises准则基础上修正获得的具有拉压不对称性特征的屈服轨迹,可以看出,压缩强度略大于拉伸强度。

2.2 铸铝失效模型的参数辨识

     不同试验类型下测量的失效应变为离散的数据点,通过曲线拟合可获得不同应力状态下的断裂曲面或曲线。CrachFEM韧性失效准则包括正向断裂和剪切断裂。三维应力状态下,正向断裂塑性应变可表示为


3 轮毂碰撞断裂的有限元模拟

3.1 轮毂子系统冲击试验

     通过轮毂子系统冲击试验及有限元分析验证AlSi7材料卡片的准确性,同时研究最合理的轮毂有限元建模方法。小偏置碰中,常见的断裂失效有轮辋破坏和轮毂断裂,子系统试验将设计准静态试验(轮毂平板压溃试验、轮辋压溃试验)和动态试验(落锤冲击试验),试验工装和加载位置如图下所示。准静态试验在万能试验机上完成,加载速度为5 mm/min,可获得加载力-位移曲线及试验后轮毂、轮辋断裂情况。铸铝材料的断裂失效与应变率密切相关,本文通过落锤冲击试验来验证高应变率下铸铝失效模拟的准确性。落锤冲击试验中将质量为207 kg的落锤从5 m高度自由下落撞击轮毂总成,并记录碰撞加速度-时间曲线及试验后轮毂断裂失效分布。

3.2 准静态压溃的有限元模拟

    图下所示为轮毂平板压溃试验、轮辋压溃试验的有限元模型,仿真模型的工装、边界约束和加载条件与试验保持一致。主要分析单元类型和失效参数对模拟结果的影响,本文仅对轮毂平板压溃工况进行详细阐述。

     平板压头与轮毂接触区域的铸铝失效对比如图10所示,可以看出,四面体在受压状态下容易产生单元失效,导致四面体轮毂与平板接触区域内的失效单元数量过多,轮毂的断裂模式与试验不符;六面体轮毂在接触区域的断裂模式与试验一致。综上,由仿真动画对比可得,六面体单元可以准确地呈现铸铝轮毂断裂失效模式,能够有效地解决四面体单元受压状态下易失效的问题。

     仿真与试验的对比发现,在仿真过程中使用六面体单元时,与半轴连接的轮毂中心不会发生断裂,但在试验过程中该轮毂中心的螺栓安装孔周围有裂纹分布。通过对轮毂中心和轮辋进行微观分析可知,这两个区域均存在铸造缩孔,但轮毂中心的缩孔孔径比轮辋的缩孔孔径大,导致轮毂中心的韧性较轮辋的韧性有所降低。由于铸造缩孔导致轮毂中心和轮辋的材料性能存在差异性,将轮毂中心和轮辋设置为相同材料的建模方式与实际不符,因此仿真模拟中需要根据铸造缩孔的影响分别定义轮毂中心和轮辋的材料特性。

     由于轮毂中心和轮辋的材料差异主要来源于铸造缩孔孔径,本文从这两个区域中切割样件进行试验研究,通过对AlSi7材料正向断裂和剪切断裂曲线进行缩放处理(即将曲线的纵坐标乘以缩放系数0.55)得到轮毂中心的材料卡片,轮辋则采用不经缩放处理的AlSi7材料卡片。根据该建模方式进行仿真,对比轮毂平板压溃试验与仿真可知,加载力-位移曲线及断裂失效模式的仿真结果均与试验结果较为吻合。图下所示为轮毂平板压溃试验与仿真的加载力-位移曲线对比。经过缩放修正后,仿真和试验的加载力-位移曲线的相关性可达90%。由图下可知,两次试验的峰值力平均值为327.5 kN,仿真的峰值力为352.4 kN,预测精度达到92.4%。

     图下所示为轮毂平板压溃的仿真与试验对比,由于轮毂缩孔缺陷具有随机分布特性,因此两次试验的断裂位置存在差异,但断裂均集中在轮毂中心,轮毂中心的断裂位置和裂纹扩展方式在仿真结果中均有良好体现,进一步表明采用该建模方式可以可靠地模拟轮毂的断裂。

    图下所示为采用六面体单元开展的轮辋压溃的仿真与试验对比,可以看出,仿真中裂纹起始位置和扩展方式与试验中一致。由于轮辋表面不平,轮辋压溃试验中压头滑移导致轮辋断裂位置存在差异,因此本文进行了4次轮辋压溃试验,以验证轮辋压溃试验的稳定性。

    图下所示为轮辋压溃仿真与试验的加载力-位移曲线对比。经过缩放修正后,曲线相关性可达87.4%。次试验的峰值力平均值为68 kN,仿真峰值力为69.6 kN,预测精度达到97.6%。

3.3 动态落锤冲击的有限元模拟

    利用准静态压缩模拟获得了更为合理的六面体单元轮毂断裂失效建模方法,将该方法应用于轮毂动态落锤冲击的仿真中,失效位置集中在与落锤压头接触的区域以及与半轴连接的轮毂中心,动态落锤冲击试验中轮毂断裂位置和变形模式基本与轮毂平板压溃试验中的轮毂断裂位置和变形模式接近,且试验结果与仿真结果具有较好的一致性。图下所示为落锤冲击的仿真和试验加速度历程曲线对比。经过缩放修正后,加速度曲线的吻合度较高,曲线相关性可达88%,表明仿真可以准确地模拟轮毂的碰撞失效过程。上述研究结果表明,基于CrachFEM失效准则开发的材料模型可以有效地预测轮毂在冲击载荷作用下的断裂行为。


4 结论

(1)针对小偏置碰仿真中轮毂断裂模拟的难题,通过材料力学试验建立了基于CrachFEM韧性失效准则的AlSi7材料卡片,可同时描述材料的弹塑性、断裂失效特性和应变率特性。

(2)进行了轮毂的准静态、动态试验与有限元仿真结果对比,结果表明,CrachFEM材料模型可以准确地模拟铸铝轮毂在碰撞载荷冲击下的断裂行为,仿真结果与试验结果具有良好的一致性。

(3)为进一步准确地模拟轮毂的断裂失效,采用六面体单元进行网格划分。相比于二阶四面体单元,虽然六面体单元建模工作偏于复杂,但能显著提高碰撞接触区域单元的失效模拟精度,并减少计算耗时。

(4)铸造缩孔分布与轮毂结构特征、加工工艺有关,轮毂中心的韧性明显低于轮辋的韧性,轮毂中心的断裂特性可通过缩放系数(设置缩放系数为0.55)进行调整,要求有限元建模时在轮毂中心和轮辋独立定义带失效参数的材料模型,可以更加可靠地模拟轮毂的碰撞断裂现象。



【免责声明】本文来自汽车设计与仿真,版权归原作者所有,仅用于学习等,对文中观点判断均保持中立,若您认为文中来源标注与事实不符,若有涉及版权等请告知,将及时修订删除,谢谢大家的关注!


来源:CAE之家
断裂碰撞汽车铸造裂纹理论材料NVH试验钣金曲面螺栓
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-11-01
最近编辑:20天前
CAE之家
硕士 | CAE仿真负责人 个人著作《汽车NVH一本通》
获赞 1136粉丝 5952文章 918课程 20
点赞
收藏
作者推荐
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈