弹性力学中有很多张量,尽管这些张量都能展开放到直角坐标系中理解,但是要想在弹性力学的基础上深入学习力学,张量的深刻理解和熟练运用是必须的。
帖子转载自知乎,内容深入浅出,从矢量的角度引入张量概念,不让人觉得突兀,值得一读。已征得贴主同意转发,点击文末“阅读原文”即可跳转原文。
我开始学习张量的时候认为,二阶张量 矩阵 二维数组。这实际上是不准确的,因为张量实际上是矢量在维度上的扩展,它不仅有大小。还有方向。我们通常说的矢量 中, 和 一般指的是分量,表示的是当前坐标系下矢量在各个方向上的分量,通常取的是笛卡尔坐标系,但实际上也可以换成其他坐标系。在二维的空间中极坐标系中的向量 和直角坐标系中的 实际上表示的是两个相同的矢量。 那么二阶张量其实也是一样,在不同的坐标系下它的表达形式会有所不同,矩阵只是它的分量表达形式,矩阵的规模取决于张量的维度,一维空间就是1×1,二维空间就是2×2,三维空间就是3×3,而矩阵的各个数值代表了它的各个分量的大小,分量结合基矢量才是这个二阶张量本身,也就是说,对于不同的坐标系,这个用于表示张量分量的矩阵的数值会发生变化。
下面以应力为例,说明一下二阶应力张量表示的含义。对于一个一维问题,应力和中学时候学到的压强的概念是类似的,就是在这个方向上单位面积受到的力的大小。对于多维问题,在笛卡尔坐标系下,应力张量可以写成 ,其中 表示张量的分量,其中的 i和j分别独立地表示不同的维度,在三维笛卡尔坐标系中分别取 。于是应力分量 可以写成矩阵的形式
而 和 分别表示基矢量,在这里可以通俗地理解为当前坐标系下的各个方向。上式中主对角元上的三个分量可以理解为在分别在三个坐标轴对应的法平面上的单位面积沿着三个坐标轴方向上的力,如下图所示,它们会使得单元体在对应的方向上受到拉伸或者压缩,即正对该方向的变形,因此被称为正应力;而非对角元上的分量则表示在法平面上的单位面积沿着其他方向的力,它会使得单元体在这个方向上发生错位,因此被称为切应力。 由于这个单元体的体积假设为无限小,它可以看做是一个点,在这个点上受力的状态是确定的,但是将坐标系的方向旋转一下,或者取其它的坐标系,那么它的各个分量就会发生变化,例如每个应力状态都有三个主应力,对应三个主方向,在三个方向组成的坐标系上,它们的切应力都为0,只有主应力。同样地,在球坐标系或柱坐标系中,它们的分量也会有所不同,但是实际他们的应力状态是客观存在的,不会发生任何变化。应力张量描述的也是这个点本身的应力状态,和选取的坐标系没有关系。也就是说,在坐标转换的过程中,实际的应力的状态也就是说应力张量并没改变,改变的只是我们的度量方式,或者说基矢量的选取。因此这也是用张量计算的意义:张量不随坐标变换而发生改变,在任何坐标系下相应的张量表示的公式都是成立的。当然,系统地学习张量还需要讲解张量的运算、斜角坐标系以及各种曲线坐标系以及各种度量张量,这里只是为了便于理解,不做叙述了。
此外,应力张量的各个分量就表示在第一个角标表示的平面内单位面积沿着第二个角标表示的方向上的力,它一共包含了两个“方向”,因此是二阶的张量。类似的,力矢量中的各个分量表示的是沿着该方向上的力的大小,只有一个“方向”,因此是一阶张量。这里的“方向”其实就是基矢量,也就是上文说的 或者在正交的笛卡尔坐标系中,基矢量分别为沿着三个坐标轴正方向上的单位矢量。
和应力张量类似,应变张量也是个二阶张量,可以写成 。正应变,例如 表示的是单元体沿着x方向上单位长度在 xy方向的形变量,可以理解为单元体在某个方向上拉伸或者压缩变形相对于初始尺寸的比例;剪应变,例如表示的是单元体沿着 方向上单位长度在 方向的形变量(这里的剪应变和材料力学中的剪应变 的关系为 ,可以理解为单元体在某个方向上沿着另一个发生错位的变形程度,由于它表示的是变形的尺寸和物体本身尺寸的比值,因此没有单位。和应力张量一样,应变张量的描述也涉及到了两个“方向”,因此也是二阶张量。
对于弹性张量,或者非弹性材料中的本构张量,它是一个四阶张量可以写成 ,乍一看很抽象,完全脑补不出来。实际上它可以理解为:材料发生变形时会产生应力,应力的大小可以由变形的程度确定,例如一维的问题中应变和应力的关系就可以类比弹簧中的 ,有 , 为杨氏模量。弹性张量就是建立应力张量和应变张量之间的联系的,其中弹性张量的前两个指标由应力确定,后两个指标由应变确定,可以看做为:应变 对应力 的影响程度,那么在笛卡尔坐标系下的 的计算公式为
其他的应力分量也可以以此类推,最后的形式为(这里为了便于书写把3×3的应力和应变张量写成了1×9的形式):
又因为剪应力互等定理, , , 。所以为了便于程序编写和表示方便,将对称部分合并,于是应变和应力分量变成了 个,弹性矩阵变成了 的形式,也就是 标记
这也刚好解释了为什么要定义前文提到的 。再将分量
分别当做第一到第六分量,就可以得到:
当然需要说明的是,弹性张量的严格推导应该从应变能密度出发,是应变能密度对应变求二阶导数得到的,即
因为求导顺序不影响求导结果,因此即上式的弹性矩阵是一个对称矩阵。