首页/文章/ 详情

拯救电源EMI的铁三角:电感、磁珠、电容

10天前浏览247

第2425期

拯救电源EMI的铁三角:电感、磁珠、电容

引言

滤波电容器、共模电感、磁珠在EMC设计电路中是常见的身影,也是消灭电磁干扰的三大利器。对于这这三者在电路中的作用细节,相信还有很工程师一知半解。本文从设计设计中,详细分析了拯救电源EMI的铁三角:电感、磁珠、电容。

铁三角之滤波电容器 

尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的。当要滤除的噪声频率确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上。

在实际工程中,要滤除的电磁噪声频率往往高达数百MHz,甚至超过1GHz。对这样高频的电磁噪声必须使用穿心电容才能有效地滤除。普通电容之所以不能有效地滤除高频噪声,是因为两个原因,一个原因是电容引线电感造成电容谐振,对高频信号呈现较大的阻抗,削弱了对高频信号的旁路作用;另一个原因是导线之间的寄生电容使高频信号发生耦合,降低了滤波效果。

穿心电容之所以能有效地滤除高频噪声,是因为穿心电容不仅没有引线电感造成电容谐振频率过低的问题,而且穿心电容可以直接安装在金属面板上,利用金属面板起到高频隔离的作用。但是在使用穿心电容时,要注意的问题是安装问题。穿心电容最大的弱点是怕高温和温度冲击,这在将穿心电容往金属面板上焊接时造成很大困难。许多电容在焊接过程中发生损坏。特别是当需要将大量的穿心电容安装在面板上时,只要有一个损坏,就很难修复,因为在将损坏的电容拆下时,会造成邻近其它电容的损坏。

铁三角之共模电感

由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一,共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。

共模电感在制作时应满足以下要求:

1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。

2)当线圈流过瞬时大电流时,磁芯不要出现饱和。

3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。

4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。

通常情况下,同时注意选择所需滤波的频段,共模阻抗越大越好,因此我们在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。另外选择时注意考虑差模阻抗对信号的影响,主要关注差模阻抗,特别注意高速端口。

铁三角之磁珠

在开关电源电路EMC设计过程中,我们常常会使用到磁珠,铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。铁氧体材料通常在高频情况下应用,因为在低频时他们主要程电感特性,使得线上的损耗很小。在高频情况下,他们主要呈电抗特性比并且随频率改变。实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。实际上,铁氧体较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由他的电阻特性决定的。

铁氧体磁珠与普通的电感相比具有更好的高频滤波特性。铁氧体在高频时呈现电阻性,相当于品质因数很低的电感器,所以能在相当宽的频率范围内保持较高的阻抗,从而提高高频滤波效能。在低频段,阻抗由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,L起主要作用,电磁干扰被反射而受到抑制;并且这时磁芯的损耗较小,整个器件是一个低损耗、高Q特性的电感,这种电感容易造成谐振,因此在低频段,有时可能出现使用铁氧体磁珠后干扰增强的现象。在高频段,阻抗由电阻成分构成,随着频率升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小。但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式耗散掉。

铁氧体抑制元件广泛应用于印制电路板、电源线和数据线上。如在印制板的电源线入口端加上铁氧体抑制元件,就可以滤除高频干扰。铁氧体磁环或磁珠专用于抑制信号线、电源线上的高频干扰和尖峰干扰,它也具有吸收静电放电脉冲干扰的能力。

使用片式磁珠还是片式电感主要还在于实际应用场合。在谐振电路中需要使用片式电感。而需要消除不需要的EMI噪声时,使用片式磁珠是最佳的选择。片式磁珠和片式电感的应用场合:片式电感:射频(RF)和无线通讯,信息技术设备,雷达检波器,汽车电子,蜂窝电话,寻呼机,音频设备,PDAs(个人数字助理),无线遥控系统以及低压供电模块等。片式磁珠:时钟发生电路,模拟电路和数字电路之间的滤波,I/O输入/输出内部连接器(比如串口,并口,键盘,鼠标,长途电信,本地局域网),射频(RF)电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机(VCRS),电视系统和手提电话中的EMI噪声抑止。

磁珠的单位是欧姆,因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆。磁珠的DATASHEET上一般会提供频率和阻抗的特性曲线图,一般以100MHz为标准,比如是在100MHz频率的时候磁珠的阻抗相当于1000欧姆。针对我们所要滤波的频段需要选取磁珠阻抗越大越好,通常情况下选取600欧姆阻抗以上的。

另外选择磁珠时需要注意磁珠的通流量,一般需要降额80%处理,用在电源电路时要考虑直流阻抗对压降影响。


来源:电磁兼容之家

电源电路电磁兼容汽车电子焊接材料
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-11-03
最近编辑:10天前
电磁兼容之家
了解更多电磁兼容相关知识和资讯...
获赞 21粉丝 126文章 2021课程 0
点赞
收藏
作者推荐

电路设计中三种常用接地方法

本文摘要:(由ai生成)本文介绍了电子设备接地的重要性,包括地的分割与汇接、接地的含义、目的和常见三种接地方法:单点接地、多点接地和混合接地。单点接地适用于低频电路,但存在公共地线阻抗问题;多点接地适用于高频电路,可降低地线阻抗;混合接地则适用于高低频混合电路。接地的一般选取原则为:低频电路采用单点接地,高频电路采用多点接地,高低频混合电路采用混合接地。正确的接地方法能提高电子设备抑制电磁干扰的能力,减少对外EMI发射,提高工作稳定性。第2428期众所周知,良好的EMC设计离不开优秀的接地,本文详细介绍三种常用接地方法。一、地的分割与汇接接地是抑制电磁干扰、提高电子设备EMC性能的重要手段之一。正确的接地既能提高产品抑制电磁干扰的能力,又能减少产品对外的EMI发射。二、接地的含义电子设备的“地”通常有两种含义:一种是“大地”(安全地),另一种是“系统基准地”(信号地)。接地就是指在系统与某个电位基准面之间建立低阻的导电通路。“接大地”就是以地球的电位为基准,并以大地作为零电位,把电子设备的金属外壳、电路基准点与大地相连接。把接地平面与大地连接,往往是出于以下考虑:1.提高设备电路系统工作的稳定性;2.静电泄放;3.为工作人员提供安全保障。三、接地的目的1.安全考虑,即保护接地;2.为信号电压提供一个稳定的零电位参考点(信号地或系统地);3.屏蔽接地。四、常见三种接地方法1. 单点接地单点接地,顾名思义,就是把电路中所有回路都接到一个单一的,相同的参考电位点上。单点接地可以分为“串联接地”和“并联接地”两种方式。串联单点接地的方式简单,但是存在共同地线的原因,导致存在公共地线阻抗,如果此时串联在一起的是功率相差很大的电路,那么互相干扰就非常严重。并联单点接地的方式可以避免公共地线耦合的因素,但是每部分电路都需要引地线到接地点上,需要的地线就过多,不实用。所以,在实际应用时,可以采用串联和并联混合的单点接地方式。在画PCB板时,把互相不易干扰的电路放一层,把互相容易发生干扰的电路放不同层,再把不同层的地并联接地。如下图所示。单点接地在高频电路里面,因为地线长,地线的阻抗是永远避免不了的因素,所以并不适用,那怎么办呢?下面再介绍“多点接地”。2. 多点接地当电路工作频率较高时,想象一下高频信号在沿着地线传播时,所到之处影响周边电路会有多么严重,因此所有电路就要就近接到地上,地线要求最短,多点接地就产生了。多点接地,其目的是为了降低地线的阻抗,在高频(f 一定的条件下)电路中,要降低阻抗,主要从两个方面去考虑,一是减小地线电阻,二是减小地线感抗。a.减小地线导体电阻,从电阻与横截面的关系公式中我们知道,要增加地线导通的横截面积。但是在高频环境中,存在一种高频电流的趋肤效应(也叫集肤效应),高频电流会在导体表面通过,所以单纯增大地线导体的横截面积往往作用不大。可以考虑在导体表面镀银,因为银的导电性较其他导电物质优秀,故而会降低导体电阻。b.减小地线的感抗,最好的方法就是增大地线的面积。在实际应用时,地线短,地面积大,抗干扰的效果就会更好。写到这里时,可能有人会问,如何才算是高频电路?“通常1MHZ以下算低频电路,可以采用单点接地,10MHZ以上算高频电路,可以采用多点接地的方式”,1MHZ和10MHZ时,如果最长地线不超过波长的1/20,可以单点接地,否则多点接地。如图所示:3. 混合接地如图所示,通过图来分析。上图中的第一种结构,假定工作在低频电路中,根据容抗Zc = 1/2πfc可知,容抗在低频环境下很大,而高频环境下很小。那么地线在低频时是断开的,在受到高频干扰时接近导通。如此接法可以有效避开地线环路的干扰影响。上图中的第二种结构,假定工作在高频电路中,根据感抗Zl = 2πfl可知,感抗在低频环境下很小,而高频环境下很大。那么地线在低频时是类似导通的,在受到高频干扰时是断开。如此接法可以有效避开地环路电流的影响。综述,在实际应用中,电路根据工作环境采用合适的接地方式可以有效避开干扰信号,达到电路的最优效果,混合接地会是个好选择!五、总结对于接地的一般选取原则如下:1.低频电路(<1mhz),建议采用单点接地;2.高频电路(>10MHZ),建议采用多点接地;3.高低频混合电路,混合接地。来源:电磁兼容之家

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈