在早起的多刚体系统的研究中,如1963年的弗勒彻(Fletcher,H.J.),胡克尔(Hooker,W.)和马克李斯(Margulies,G.)等提出的方法均为牛顿—欧拉方程的直接发展。以席勒恩(Schiehlen,W.)和克罗策(Kreuzer,E.)为代表,致力于用程式化方法自动消除牛顿—欧拉方程中的铰约束力。罗伯森(Roberson,R.E.)和威藤堡(Wittenburg,J.)则利用虚功原理建立动力学方程以直接避免铰的约束力的出现。
1966年罗伯森(Roberson,R.E.)和威藤堡(Wittenburg,J.)创造性地将图论引入多刚体系统动力学,使牛顿—欧拉方程跨入新阶段,他们利用图论的一些基本概念和数学工具成功地描述系统中各刚体之间的关联,该关联称为系统的结构。利用图论工具将系统的结构引进运动学和动力学的计算公式。
胡克尔和马格里斯,罗伯森和威藤堡独立地发现并发展了增广体概念,这一概念是1897年由多体系统动力学的先驱者费舍尔(Fischer,O.)所创造。利用增广体概念可对胡克尔—马格里斯和罗伯森—威藤堡的基本方程做出明确的物理解释。罗伯森和威藤堡以铰的相对坐标为独立变量,以优美的风格处理了树结构多刚体系统。对于非树系统,则必须利用铰切割方法转变为树系统处理。1977年威藤堡关于多刚体系统动力学的著作最早问世,已成为这门学科的入门读物。
凯恩(Kane,T.R.)方法是1965年前后提出的分析复杂系统的一种新方法。这种方法以广义速率代替广义坐标为独立变量,实际上等同于吉布斯(Gibbs,J.W.)和阿佩尔(Appell,P.)的伪坐标和伪速度概念。其重点集中于运动,而不再是位形,从而避免了对动力学函数求导的繁琐步骤,直接应用达朗伯原理建立动力学方程,它兼有矢量力学和分析力学的特点,即适用于完整系统也适用于非完整系统,对于自由度多的复杂机械多体系统,凯恩方法可以减小计算步骤。1974年休斯顿(Huston,R.L.)将凯恩方法发展为适用于多体系统的建模方法。
1977年国际理论和应用力学学会(International Union of Theoretical and Applied Mechanics - IUTAM)发起在德国慕尼黑由Magnus主持召开第一次多刚体系统动力学讨论会。
1983年北大西洋公约组织与美国国家科学基金委等(NATO-NSF-ARD)联合组织在美国爱阿华由Haug主持召开“机械系统动力学计算机辅助分析与优化高级研讨会”。Haug等人提出了适宜于计算机自动建模与求解的多刚体系统笛卡尔建模方法并确立了“计算多体系统动力学”这门新的学科。
随后多体系统动力学的研究重点由多刚体系统走向侧重多柔体系统,柔性多体系统动力学成为计算多体系统动力学的重要内容。20世纪90年代Shabana,A.A.基于有限元和连续介质力学原理提出绝对节点坐标方法是多体系统动力学领域近期取得的重要进展。
现今多体系统动力学已成为现代力学的重要发展方向,各种新兴的研究方法层出不穷,出现了两个著名的专业学术国际期刊:Springer出版社的《Multibody System Dynamics》和英国机械工程协会的《Journal of Multi-body Dynamics》。
我国的多体系统动力学的研究起步较晚,但是发展很快,1981年上海交通大学邀请的Kane教授、1983年南京航空航天大学邀请了美国的Roberson教授、1985年重庆大学邀请了美国的Huston教授、1986年北京航空航天大学邀请了德国的Wittenburg教授来华讲学。先后几次讲学促进了我国多体系统动力学的发展。1986年8月在北京召开了中国力学学会一般力学专业委员会“多刚体系统动力学”学组成立大会暨学术研讨会。1988年在长春召开“全国柔性多体动力学研讨会”,标志我国力学界从多刚体系统的研究进入了柔性多体系统动力学的研究。
值得一提,原吉林工业大学(现吉林大学)汽车工程系1985年由方传流教授领导成立了“汽车多刚体系统动力学”课题组,开始将多体系统动力学应用于汽车工程技术中。工程力学系陆佑方教授于1996年出版了《柔性多体系统动力学》。