首页/文章/ 详情

基于comsol模拟微穿孔板和卷曲通道的混合吸声器低频吸声

1月前浏览677

研究背景:

具有深亚波长厚度(5cm)的吸收器对低频声音(<500Hz)的衰减在噪声控制工程中引起了极大的兴趣。然而,由于低频声音的强穿透性和普通材料的弱固有分散性,这是一项具有挑战性的任务。传统的吸声材料,如多孔材料,已被证明对高频吸声(>1000Hz)有效,但如果厚度有限,在低频时会有缺点。近年来,声学超材料的概念为低频吸声器的设计提供了新的思路。许多亚波长吸声材料或设备是基于谐振结构开发的,如装饰膜谐振器、亥姆霍兹谐振器。带有背腔的传统微孔板也是低频吸声器的良好候选者。

研究内容:

提出了一种基于微穿孔板和卷曲法布里-珀罗通道的混合声学超材料吸收器,它可以有效地吸收非常低频率(<500 Hz)的入射声波能量,具有较宽的相对吸收带宽。分析检验了所提吸收器的高效可调吸收特性,并通过数值模拟和实验验证了该吸收体的吸收特性。


图1. 混合超材料吸收器示意图


图2.论文中数值模拟的吸声系数曲线

数值模拟:

在comsol中利用压力声学接口对声学超材料的声学特性进行仿真分析。仿真分析的步骤如下所示。

(1)建立几何模型


图3.几何模型的构建

(2)设置物理场


图4.物理场的设置

(3)求解吸声系数



图5.数值分析的吸声系数

通过数值分析计算得到的吸声系数曲线与文献的结果基本一致。两个吸收器使用相同的螺旋形通道构建,但使用不同的MPP,其中一种情况的参数为d=0.9 mm、t0=0.64 mm、p=0.018(左图),另一种情况下的参数为d=0.4mm、t0 =0.64 mm和p=0.048(右图)。

总之,我们提出了一种基于微穿孔面板和卷曲Fabry–P erot通道的混合声学超材料吸收器,它可以有效地吸收极低频(<500 Hz)下的入射声波能量,并具有较宽的相对吸收带宽。对所提出的吸收体的高效可调谐吸收特性进行了分析,并通过数值模拟和实验进行了验证。

我们发现,吸收主要是由微穿孔面板中声波的摩擦损失引起的。还通过图形分析复平面中的反射系数来解释这种现象。通过集成两个具有不同参数的平行吸收单元,相对吸收带宽进一步加宽至82.2%。由于亚波长厚度深、带宽相对较宽且易于制造,所提出的混合吸收器在噪声控制工程中具有广泛的潜在应用。

最后,有相关仿真需求欢迎与我们联络。


来源:320科技工作室
Comsol声学材料控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-10-19
最近编辑:1月前
320科技工作室
硕士 | 结构工程师 lammps/ms/vasp/
获赞 223粉丝 346文章 306课程 0
点赞
收藏
作者推荐

Lumerical fdtd和charge联合仿真电学可调谐的MOS结构吸收器

关键词:FDTD;Charge;可调谐;MOS结构;载流子浓度电光开关的等离子体吸收体的电可调谐性是高度可调的。通过施加偏置电压,在氧化物层中产生较大的场强,同时载流子在氧化物-半导体界面处形成累积层或耗尽层(金属的载流子浓度较大,耗尽层相比于半导体来说可以忽略不计)。载流子浓度的变化引起折射率的改变,导致光谱特性也发生变化,利用这一点,我们可以制作电偏置的开关。如题1所示,我们的设计采用金属-氧化物-半导体电容器配置(MOS),包括金属Au镜面,氧化钛间隔层和半导体氧化铟锡(ITO)材料。铝在红外具有高反射率,因此是一种合适的结构材料。作为活性层的 ITO 薄膜被 插入元表面和间隔物之间。Au层和ITO层作为电极材料,当在 ITO 和底部 Au 之间施加电压时,ITO 层中的自由电子会在 ITO 和氧化钛的界面附近聚集。氧化钛具有很高的相对介电常数(κ =81),因此内部可以产生很强的电场,载流子也因此可以大量聚集。因此,通过外加电场效应载流子的积累,可以实现ITO折射率的显著电压可调变化,从而对入射的偏振光实现光学性能的调谐,即电光开关。图1 MOS结构及加电偏置示意图透明导电氧化物(TCO)中的ITO作为一种有前途的等离子体材料被广泛研究,具有低损耗和制造兼容性,ITO的光学介电常数可以用Drude模型近似:其中,ε∞是高频介电常数,ω是光波的角频率,γ是与自由载流子阻尼系数,wp是等离子屏率。其中等离子体频率定义如下:等离子体频率由载流子浓度和有效质量m*有关。根据上述公式,光学材料的介电常数随载流子浓度的变化而变化。其中MOS型结构中加电压前后载流子浓度变化引起的折射率变化如下公式:在本文的例子中,我们先通过Lumerical Charge软件仿真结构的电学特性,外加电压为正负5V,仿真ITO薄膜的载流子浓度随外加电压0V、5V、-5V载流子浓度的变化,由于载流子浓度的变化会导致薄膜等离子频率的变化,因此会导致光谱的变化,所以把电学数据通过Lumerical FDTD软件求解器件的光学性质变化,证明电光开关的可行性。通过在ITO薄膜上加载流子浓度的监视器,可以得到ITO薄膜中的载流子浓度随偏置电压的变化,外加-5V电压时,左侧(ITO和TiO2交界处)形成载流子耗尽层,外加5V电压时,形成载流子累积层。图2 ITO薄膜在外加电压下的载流子浓度分布对具有不同载流子浓度分布ITO薄膜的器件进行反射率光谱仿真,外加偏振光斜入射,得到如图3所示的光谱,可以证明MOS结构可以实现电偏置的吸收调谐器。图3 MOS结构在外加电压下的光谱分布为了更好地理解MOS器件吸收的性质,我们模拟了TiO2和ITO薄膜的电场分布,如图4所示,电场大部分局域在ITO和TiO2界面并且靠近ITO薄膜,说明ITO薄膜吸收了大部分的光强,导致在2.23um左右出现一个反射谷。图4 MOS结构的电场分布最后,有相关需求欢迎联系我们来源:320科技工作室

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈