大家节日快乐呀:吾日三省吾身,今天学习了吗? 看书了吗?刷我公 众号了吗?好啦,不说废话了,今天让我们看一下三型氢气瓶的一个固话制度对残余应力的 影响。
本文来源::Type III 수소탱크 경화조건에 따른 잔류응력 비교
1. 研究背景环保汽车发展趋势与氢燃料电池汽车的优势
全球范围内,随着对低碳及燃油效率法规的日益严格,氢燃料电池汽车(FCEV)、电动汽车(EV)和混合动力汽车(HEV)等环保汽车的研发进程显著加快。其中,FCEV通过在车辆上安装高压氢罐,将氢能源转化为电能,从而驱动汽车行驶。与存在充电时间长以及因电池容量限制导致续航里程短等问题的EV不同,FCEV能够在3分钟内完成氢燃料的充装,实现约500km的续航里程。
在韩国,环保汽车发展举措积极。例如,首尔市计划到2030年将仁川机场到首尔的450余辆机场巴士全部转换为氢巴士。同时,SK、现代汽车等国内大型企业也以韩国氢委员会和韩国H2商业峰会为依托,积极推进氢mobility生态系统的构建,旨在实现2050年的碳减排目标。
氢储存系统与氢罐的重要性及分类
氢储存系统是保障FCEV正常运行的关键,它由氢储存罐、电磁阀、调节器、压力传感器以及用于控制充电时温度升高的冷却系统等组成。氢储存罐需要在 - 40°C - 85°C的环境温度下承受700 bar的压力,并且要保证自身重量不会对车辆的燃油效率产生过大影响。 氢罐依据材料和制造方式的不同,可分为Type I - IV四种类型。Type I由金属衬里(Liner)制成;Type II是在金属衬里基础上采用玻璃纤维进行增强;Type III是铝衬里与碳纤维增强的结构;Type IV则是在塑料衬里上使用碳纤维增强。在这之中,Type III和Type IV受到了更多的关注。Type IV因材料特性具有重量轻和较高的再充电耐久性优势,但在塑料与铝制端口的连接部位存在气体泄漏风险,以及衬里有极少量氢渗透的现象。相比之下,Type III的金属衬里能够更好地保持气密性,并且充电时间相对较短。这是由于其较高的热导率,使得在相同体积下能够充装更多的氢气。
Type III氢罐相关研究现状及残余应力研究的必要性
针对Type III氢罐,已有诸多研究。例如,Suryan等人通过三维数值分析,使用实际气体模型研究了氢充电时初始温度对罐内温度变化的影响;Zheng等人探讨了预冷却系统对氢充电时产生热量的影响;Wu等人通过三维流动分析研究了质量流量对快速氢充电的影响;Li等人借助篝火试验分析了火灾暴露时Type III氢罐的行为。然而,在这些与Type III氢罐安全相关的研究中,关于残余应力的研究却相对匮乏。
图1。环氧树脂通过温度(a) 100°C,(b)120°C,(b)120°C,(c)140°C,(d)160°C测量DSC
氢罐的残余应力与结构的安全性和使用寿命密切相关。残余应力是由于高分子树脂固化过程中发生的化学反应导致的收缩,以及相邻复合材层之间因热收缩程度不同而产生的。如果固化反应产生的热量不能有效散发,复合材内部就会出现温度不平衡,进而引发诸如不良固结等问题,对复合材容器的质量产生不利影响。因此,对残余应力进行评估和分析,通过适当的固化周期减少残余变形,对于提高复合材容器的完整性至关重要。
表1.环氧树脂固化温度的反应热和峰值时间
2. 实验方法实验材料及DSC测量 材料选择与特性
本研究选用T700(Toray)碳纤维作为增强材料。环氧树脂采用SE8503(国图化学),它属于双酚 - A型,具有适中的粘度和较高的强度,非常适合应用于复合材料。固化剂选用SH - 709(国图化学),它是一种酸酐类固化剂,具有优异的高温固化性能,在Filament winding工艺中表现出良好的操作性。材料的配合比为SE8503 : SH - 709 = 100 : 70。
DSC测量原理与过程
为了深入了解环氧树脂在不同温度下的固化行为,从而确定合适的固化温度,采用差示扫描量热计(DSC)进行测量。通过测量试样在不同温度和时间下的热流数据,来计算反应总热量
。其中,q表示热流,$t_{f}$为反应结束的时间点。 各时间点的固化度($X_{t}$)通过公式
计算得出。为了对树脂的固化过程进行数值建模,采用了热固性树脂(autocatalytic reaction)模型,其固化率公式为
在此公式中,m和n是反应级数,反应速率常数
计算得出,其中$E_{a}$为活化能,R为气体常数,A为指前因子。 通过对DSC测量得到的热流数据进行曲线拟合,从而得出模型的参数值。在测量过程中,从100°C开始,以20°C为间隔,一直到160°C,采用等温测量法测量不同固化温度下的热流随时间的变化情况。 实验结果显示,在100°C时,未观察到发热峰,表明在此温度下未发生固化。从120°C开始出现发热峰,并且随着固化温度的升高,峰时间逐渐缩短。在140°C及以上温度时,发热量之间的差异不再明显。综合考虑,在使用本研究的树脂制作Type III复合材氢罐时,应综合考虑发热量和固化时间,将固化温度设置为140°C及以上。残余应力测量(ring slitting) 复合容器制作过程
使用缠绕设备进行复合容器的制作。设定缠绕速度为3.14 rad/s,带宽缠绕张力为3.3 bar,缠绕角度为88°。在铝芯轴(mandrel)上缠绕浸渍有树脂的碳纤维,最终制作出内径为90mm、厚度为40mm的复合容器。由于使用的是氢罐量产设备,用于实验的小芯轴在长度方向上存在厚度偏差,因此在后续实验中只使用芯轴中心部分的复合材料。
图2 细丝缠绕复合血管
固化周期设置与操作
为了研究复合容器的固化周期对残余应力的影响,设置了两种不同的固化周期。一种是常规的2阶段固化周期,另一种是为了防止过热而特意延长散热时间的4阶段固化周期。将芯轴放置在能够控制温度达到400°C的专用固化室内,通过旋转芯轴的方式使复合材料在两种不同的固化周期下进行固化。
图3 二级固化和四级固化的温度曲线
试样制备与应变片粘贴
-将固化后的复合容器从芯轴上取下,使用大型带锯机将其切割成环形试样。在复合环的0.25、0.5、0.75厚度部分,分别在0°和90°位置进行操作。首先使用砂纸对粘贴应变片的表面进行打磨,以确保应变片能够更好地粘贴并准确记录数据。然后粘贴应变片(KFG - 2 - 120 - D - 16 - 11,KYOWA)。采用在两列位置粘贴应变片的方式,这是为了预防在试样切割之后的操作过程中,由于应变片可能受到损坏而导致数据丢失的情况发生。
图4 养护床(左)、锯床(右)
残余应力测量方法
通过水射流切割应变片附着部位的两侧,使切割部位呈楔形。在这个过程中,一方面缓解了应变片附着部位的残余应力,另一方面通过应变片连接的数据记录仪记录下切割过程中的变形情况。针对每个固化周期,都测量5个试样,以获取更准确的残余应力数据。
图5。复合材料环上的压力表附件
图6 射喷射机3. 实验结果及数值分析-残余应变结果 不同固化周期下的残余应变对比 - 通过对制作的复合环进行测量,得到了不同位置的残余应变数据。在$r^{*}$值分别为0.28、0.56、0.83的位置($r^{*}$是无量纲半径,计算公式为
其中$R_{o}$为复合容器的外径,$R_{i}$为芯轴的内径),采用4阶段固化周期制作的复合环的残余应变与采用2阶段固化周期制作的复合环相比,分别降低了9.1%、11.0%、17.6%。 这种差异产生的原因在于2阶段固化周期的特点。在2阶段固化周期中,固化过程在初期进行得非常快,并且完成固化的时间较短。这就导致在厚复合材料内部,由于发热反应产生的热量过多,出现了过热现象,而内部产生的热量向外部散发不完全,从而形成了温度梯度。这种温度梯度的存在是导致残余应力产生的关键因素。因此,通过适当的固化工艺来减少温度梯度,对于降低残余应力至关重要。
图7 复合材料环的残余应变
-数值分析验证
径向应变数值分析与实验结果对比
在数值分析中,径向应变的数值是在特定的缠绕条件下得出的,具体条件为缠绕角速度为3.14 rad/s,带宽缠绕张力为48 lbf/inch。在$r^{*} > 0.11$(复合容器部分)处的径向应变值是通过WINDTHICK代码计算得出的。将数值分析结果与实验结果进行对比,可以发现两者的趋势是相似的。
这种相似性表明数值分析在一定程度上能够反映实际情况,但同时也说明实验值与数值分析值之间可能存在一些差异。这些差异可能是由于多种因素造成的,例如在数值分析中可能没有完全考虑到实际实验中的所有复杂情况,或者在实验过程中存在一些不可避免的误差。
-树脂粘度变化时间的数值分析验证
通过数值分析,研究了树脂在不同固化周期下达到1kPa·s以上粘度的时间。结果表明,在2阶段试样中,树脂达到1kPa·s以上粘度的时间在各层数量上比4阶段试样要早约1小时以上。这是因为4阶段固化周期为了降低过热和温度不平衡的情况,在达到最终固化温度140°C的过程中速度较慢,同时到达起始固化温度120°C的时间也比2阶段固化周期要晚。这一结果进一步验证了固化条件的差异会导致数值分析结果出现合理的变化,从而证明了数值分析结果的合理性。
图8。残余应变的实验结果和数值计算结果 4. 研究结论- 固化周期对残余应力的影响 通过实验和数值分析,深入研究了Type III复合材氢罐制作过程中固化周期对残余应力的影响。实验值是通过在filament winding之后,将复合材料从芯轴上分离下来,切割成环形试样,在环形试样上粘贴应变片,然后沿着径向方向切割试样并记录应变变化的ring slitting方法获得的。 研究结果表明,与2阶段固化周期相比,采用4阶段固化周期制作氢罐时,残余应变至少能够降低9.1% - 17.6%。并且将实验结果与数值分析结果进行对比后发现,两者的趋势是相似的。这说明通过改变固化周期能够有效地降低氢罐的残余应力。
试验值与数值分析值的差异及后续研究方向
虽然实验结果与数值分析结果在趋势上相似,但仍然存在一些差异。例如,在数值分析值与实际实验值之间存在一定的差异,并且在对各层进行计算时,层与层之间存在最大1.5%的应变差异。此外,除了固化周期外,还有其他一些输入参数也会影响结果,比如层厚、圆柱长度、层数、层角、弹性系数、泊松比、收缩系数、失效准则等。 由于存在这些差异,后续研究需要进一步优化数值分析模型。同时,计划结合更多的因素,包括不同的固化条件、缠绕角度、树脂种类等,对Type IV复合材氢罐在固化周期对残余应力的影响方面进行进一步的评估和研究,以更全面地了解复合材氢罐的残余应力特性,为提高氢罐的质量和安全性提供更可靠的理论依据。