管道热应力分析原理详解(理论计算与workbench实现)
正文共: 1649字 14图 预计阅读时间: 5分钟1 前言管道热应力分析是高温系统设计的一个重要工作,特别是对于SOFC系统,设备&管道的运行温度可达800℃以上。这种情况下,设备&管道的热应力分析很重要,因为蠕变将会是一个重要问题,设备管路集成设计时,需要尽可能降低热应力水平。热应力分析可能对于大多数工程设计人员而言,就是在专业软件上熟悉一下操作,因为整个热应力分析流程已经被设计成流水线模式。但是一个合格的设计人员,对于这种分析更为底层的信息笔者觉得有必要去研究研究。今天,我们用一个简单的管道模型,完整地演示一下热应力分析的底层逻辑。2 模型问题描述考虑如下一根钢管,规格为φ73×3,长度L=1000mm,不考虑内部压力,假设管道温度由22℃升高到900℃,分别计算不同的力学边界条件下管道的热应力情况。我们考虑三种力学边界条件:1)两端固定;2)一端固定,一端自由;3)一端固定,另一端连接设备,并且设备放置于滑动支座上,滑动摩擦系数μ=0.3,设备质量60kg。假设钢管的在900℃的弹性模量E为2e5MPa,22℃到900℃范围内的线膨胀系数α为1.2e-5mm/mm.℃3 理论计算我们先采用理论方法计算上述几种条件的热应力。首先,对于边界条件2),很显然,管道是自由的。因此,轴向上的应力为0MPa。同时,管道受热需要膨胀,其自由膨胀长度△L=αL△t=1.2e-5×1000×(900-22)=10.536mm。当然,管道两端对支座的作用力为0。其次,对于边界条件1),很显然,由于两端固定,因此管道的膨胀长度△L=0。但是,管道所受的热应力,相当于L+△L长度的管道被压缩成L长度而造成的轴向应力。所以,管道的应变为ε=△L/L,而应力可以根据胡克定律计算得到,即σ=εE=0.010536×2e5=2107.2MPa。管道两端对支座的作用力就等于管道的轴向力,亦即F=σA=2107.2×π/4×(73^2-67^2)= 1390192.448N再次,对于边界条件3),相当于边界条件1)的弱化情况,介于边界条件2)和边界条件1)之间。我们首先对管道进行受力平衡分析:管道受热膨胀后会对设备形成推力F,这个推力起始阶段会大于设备的静摩擦力f,设备发生位移,直至推力F刚好等于静摩擦力f。此时管道所受的轴向力(推力)F=f=μmg=0.3×60×9.81=176.58N,因此管道的轴向应力即热应力σ=F/A=176.58/[π/4×(73^2-67^2)]= 0.2676MPa。管道的应变ε=σ/E=1.34e-6,因此由于设备约束推力形成的位移为εL=1.34e-3mm,管道总变形的自由膨胀的位移减去设备约束推力位移:△L=αL△t-εL=10.535mm。可见,要减小管道的热应力,减弱其约束是根本。采用滑动支座是有效的弱化约束的方法,另外减小支座摩擦系数也很重要。4 workbench实现接下来,我们在workbench平台分别计算上述三种工况。注意,我们创建管道1/4对称模型,便于边界条件设置。边界条件2),管道一端设置位移约束,轴向位移为0,其余方向自由;1/4剖面设置无摩擦约束,亦即对称边界;管道本体温度900℃。管道的变形和应力云图如下,另一端位移10.536mm,管道的轴向应力几乎为0,与理论计算一致。边界条件1),管道两端设置位移约束,轴向位移为0,其余方向自由;1/4剖面设置无摩擦约束,亦即对称边界;管道本体温度900℃。管道的变形和应力云图如下,管道轴向位移几乎为0,管道的轴向应力2107.2MPa,管端对支座的推力为1390200N(由于1/4模型,因此总推力需要乘以4),与理论计算一致。边界条件3),管道一端设置位移约束,轴向位移为0,其余方向自由;管道另一端施加44.145N压力(由于1/4模型,因此推力需要除以4);1/4剖面设置无摩擦约束,亦即对称边界;管道本体温度900℃。管道的变形和应力云图如下,另一端位移10.535mm,管道的轴向应力约为0.267MPa,与理论计算一致。来源:仿真与工程