从热力学角度,航空发动机的热力过程可以简化为理想的布雷顿循环,为了提高发动机做功能力,涡轮前温度持续攀升,现在先进航空发动机涡轮前温度已超过2100K,未来航空发动机涡轮前温度将超过2400K,远超目前最先进的叶片材料耐温极限(~1370K),如图1所示。因此,高效冷却技术不仅是实现涡轮前温度持续攀升的关键技术,而且是保证航空发动机安全运行的第一道防线。
涡轮叶片前缘直接被高温燃气冲刷,承受着最高的热负荷也最容易被烧蚀,通常采用内部冲击冷却和外部气膜冷却等高效冷却技术,然而冲击冷却会导致热应力分布不均匀,进而降低叶片结构强度。目前,许多学者集中采用简化的几何对称的前缘模型来研究前缘内部流动现象和换热特性。研究发现由于叶片前缘结构的简化,前缘区域的气膜冷却效果存在较大误差,同时指出在设计中应考虑实际叶片的冷却性能。根据气动设计的要求,涡轮叶片前缘结构通常设计为几何不对称的,其内部冷却空气流动特性极为复杂,亟需开展深入研究。针对上述问题,南京航空航天大学毛军逵教授团队采用典型的非对称实际涡轮叶片前缘(如图2),在涡轮叶片前缘冲击/旋流冷却结构流动特性领域开展了实验研究。搭建了基于particle image velocimetry(PIV)测试技术的实验台,揭示了射流雷诺数(Re=10000和Re=20000)和冲击孔偏移距离-冲击孔孔径之比(e/d=1.5、e/d=0和e/d=1.5)对撞击/旋流冷却结构流动特性的影响机理,同时归纳了两种冷却空气流出方式(如图3)的影响机制。关注公众 号: 两机动力先行,免费获取海量两机资料,聚焦两机知识和关键技术!
图2 典型的非对称实际涡轮叶片前缘
图3 两种冷却空气流出方式
结果表明,无论雷诺数大小,冷却空气射流直接冲击叶片前缘内部滞止区域,随即沿着滞止区域两侧的内壁面流动扩散。当e/d=0时,冲击射流扩散流向圆角较大的一侧移动较多,该现象在Re=20000时尤为明显(如图4);在较高的射流雷诺数条件下,冲击射流速度和涡量的强度及面积均有显著增加(如图5)。
图4 Jet-3截面速度的实验结果:(a) Re=10000和(b) Re=20000
图5 Jet-3截面涡量的实验结果:(a) Re=10000和(b) Re=20000
无论冲击孔偏移距离大小,冲击射流均能在圆角较大的一侧形成漩涡(如图6)。从e/d=1.5、e/d=0和e/d=−1.5以及Re = 20000情况下的速度和涡量分布可以看出,当e/d从1.5变化到−1.5时,冲击射流到达前缘内部靶面上的速度显著降低,如图7(a)、图8(b)和图9(a)所示。
图6 Jet-3截面流线分布:(a) 𝑒/𝑑=1.5,(b) 𝑒/𝑑=1.50和(c) 𝑒/𝑑=−1.5
图7 当Re=20000和𝑒/𝑑=1.5时的实验结果:(a)速度和(b)涡量
图8 当Re=20000和𝑒/𝑑=0时的实验结果:(a)速度和(b)涡量
图9 当Re=20000和𝑒/𝑑=−1.5时的实验结果:(a)速度和(b)涡量
当Re=20000和e/d=0时,无论冷却空气流出方式如何,冲击射流的流速沿着流动方向逐渐减小,而且此现象在不含气膜冷却的前缘模型内比含有气膜冷却的前缘模型内更为明显;此外,在冲击射流左侧较小的圆角附近,形成了一个充满着整个空间的正涡度和高强度的逆时针旋涡(如图10和图11)。关注公众 号: 两机动力先行,免费获取海量两机资料,聚焦两机知识和关键技术!
图10 当Re=20000和𝑒/𝑑= 1.5时,不同冷却空气流出方式在Jet-3截面上的涡量实验结果
图11 当Re=20000和𝑒/𝑑=1.5时,Jet-3横截面上的流线分布
相关成果以“Experimental investigations on flow characteristics of impingement/swirl cooling structures inside a blade leading edge”为题,发表于Physics of Fluids期刊,该研究被主编遴选为Featured Article。本文第一作者为韩枫副教授,通讯作者为毛军逵教授。
文章信息
Feng Han(韩枫), Lingyang Wang(王凌洋), Haotian Pu(浦昊天), Junkui Mao(毛军逵)*. Experimental investigations on flow characteristics of impingement/swirl cooling structures inside a blade leading edge. Physics of Fluids 35, 115103 (2023).