首页/文章/ 详情

氢气液化和液氢储存

18天前浏览228

1. 引言:为什么要液化氢

本文来源:Hydrogen liquefaction and liquid hydrogen storage

  • 能量含量对比

    • 氢在质量基础上具有最大的热值,为 120 MJ/kg,是其他燃料的两倍多,如甲烷为 50.0 MJ/kg,LPG 约为 46 MJ/kg,汽油略高于 44 MJ/kg,柴油略低于 44 MJ/kg。

    • 在 15°C 和 1 巴的环境条件下,氢以气相存在,由于密度仅为 0.084 kg/m³,摩尔质量低,其低热值低至 0.01 MJ/L。压缩气态氢到 200 或 700 巴时,密度分别增加到 15.0 和 40.2 kg/m³,热值分别提高到 1.80 和 4.82 MJ/L。相比之下,在相同压力和 15°C 下,压缩甲烷的低热值分别为 8.39 和 15.8 MJ/L,高于氢。

    • 在饱和液体条件下,1 和 3.5 巴时氢的热值分别翻倍至 8.50 和 7.68 MJ/L(密度分别为 70.9 和 64.0 kg/m³)。LPG 在 1 巴时是气体,5 巴时是液体,5 巴时热值约为 26 MJ/L。汽油和柴油的热值更高,分别约为 32 和 36 MJ/L。

  • 液化氢的优势

    • 液化氢可以缓解氢在体积能量含量低的问题,使氢在相同体积下具有更高的能量密度。

    • 尽管氢液化是能源密集型过程,且氢在低温(1 巴时约为 - 253°C)下以液体形式存在,但目前氢液化器和液氢储存容器在世界范围内是存在的,相对大量的氢已在中央工厂被液化、通过低温卡车拖车或火车车厢和管道进行分配,并储存在终端使用地点的真空绝缘容器中。

  • 基础设施需求

    • 以欧盟为例,2008 - 2012 年期间,欧盟 28 个国家的道路上约有 2.6 - 2.8 亿辆汽车,同期道路运输的最终能源消耗为 300 - 310 万吨石油当量,平均每年道路运输的电力消耗约为 400 - 410 GW,即 100 万辆汽车平均需要 1.5 GW 的电力消耗。

    • 由于氢的低热值为 120 MJ/kg,为满足 100 万辆汽车的需求,氢液化器需要处理 12.5 kg/s(或 1080 t / 天)。因此,整个欧洲需要分布 260 - 280 个这样的液化器。但目前世界氢液化能力远低于此需求,例如 2003 年世界氢液化能力约为 290 t / 天,2009 年约为 355 t / 天,这表明基于氢的大规模移动性需要比当前大至少两个数量级的基础设施。

图2.2常见液氢基础设施概述:中央工厂液化,大型真空绝缘容器作为缓冲(顶部为空气产品),通过低温卡车拖车从工厂分配至最终用户(底部为空气产品)。


2. 低温液化的基础


  • 基本概念

    • 低温学从古希腊语而来,意为产生冰冷,现指低于 - 150°C(123K)的温度。低温液化是将大气条件下的气态物质在大气压力下转化为低温液体的过程,适用于氦、氢、氖、氮和氧等永久气体。

    • 低温液化的时代始于 19 世纪 40 年代,此后有一系列重要事件,如 1877 年 Cailletet 和 Pictet 首次独立产生液态氧雾,1883 年 Wroblewski 和 Olszewski 完全液化氧和氮,1892 年 Dewar 开发真空绝缘容器,1895 年 Linde 获得空气液化专利,1902 年 Claude 开发空气液化系统,1908 年 Onnes 成功液化氦,1947 年 Collins 开发高效氦液化器等。当前低温技术的应用包括火箭推进、高能物理、电子、冶金和食品加工等领域。

  • 冷却效应

    • 低温液化器基于热力学概念,通过从适当初始条件绝热膨胀流体来获得冷却效果。绝热膨胀可有无机械提取能量两种方式,分别通过节流阀(等焓过程)和膨胀机(理想等熵过程)实现。由于液化器基于流体膨胀,还需要压缩过程(在环境温度下,通常中间冷却)和热交换器来完成循环。

    • 一般来说,任何流体的节流都会导致温度变化,由焦耳 - 汤姆逊系数描述,其定义为 μ := (∂T / ∂p)h,该系数表明从给定温度和压力条件开始,无限小的节流对流体温度的影响。温度和压力条件的轨迹中,使温度不变的称为反转曲线,相应的温度为反转温度。证明可得(∂T / ∂p)h ≡ v(βT - 1)/cp,其中 v 是比体积,β 是热膨胀系数,cp 是定压比热。反转温度 Ti ≡ 1 / β,可能有两个、一个或无解,意味着给定压力下可能有两个、一个或没有反转温度。反转曲线将压力和温度区域分为两个区域,焦耳 - 汤姆逊系数为正的区域节流产生冷却效果,为负的区域节流产生加热效果。节流的最大冷却效果来自位于反转曲线上的初始条件,液体节流还可能产生部分蒸发的两相状态,温度更低,气体液化器常采用闪蒸蒸发产生更冷的饱和液体作为最终产品,闪蒸蒸发产生的低压蒸汽在低温或环境温度下被重新压缩。

    • 与节流不同,有能量提取的流体膨胀理想情况下会导致更低的温度,由(∂T / ∂p)s ≡ vβT /cp 描述,该式永远不会为负,仅在不可压缩流体的假设情况下为零(此时 β 为零,因为 v 是常数)。β 越大冷却效果越大,但温度 T 越低冷却效果越小。因此,采用膨胀机的气体液化器膨胀的是气体(从环境温度和液化流体温度之间的中间温度开始),而不是液体。


    • 图2.3简单或单压配置(左)、双压(中心)和预冷单压(右)。在这些循环中,处理过的流体也是工作流体。(a)简单或单压,(b)双压,(c)单压预冷


  • 液化循环

    • 最基本的液化方案是(简单或单压)林德 - 汉普森循环,如图 2.3a 所示,仅使用节流阀来实现冷却效果。气态入口与闪蒸蒸发的蒸汽回流混合并在中间冷却压缩机中压缩,压缩流在热交换器中通过蒸汽回流回热冷却,最终节流,较冷的饱和液体作为产品被提取,饱和蒸汽返回压缩机。该循环性能通常不高,可通过在两个压力水平上分割节流来提高,形成双压林德 - 汉普森循环(图 2.3b)。当要液化的流体(如氢)在任何压力下的反转曲线低于环境温度时,需要一个预冷系统,在回热热交换器和节流阀之前冷却流(图 2.3c)。

    • 通过采用膨胀机可显著提高液化器的性能,包含膨胀机的基本方案是克劳德循环(图 2.4a),它还使用三个热交换器、节流阀和中间冷却压缩机。热交换器在三个不同温度区间运行,膨胀机在中间区间运行,压缩机在环境温度下运行,节流阀在低温下运行。克劳德循环可在额外压力水平上运行,此时节流阀在最大和最小压力之间工作,膨胀机在中间和最小压力之间工作。此外,克劳德循环可采用预冷系统,尽管对像氢这样反转曲线较低的流体不是严格必要的。克劳德循环有多种修改版本,如 Heylandt 循环不使用高温换热器,Kapitza 循环不使用低温换热器,Collins 循环将一个膨胀机扩展到两个或更多个,并在其间插入热交换器。

  • 图2.4采用简单或单压配置(左)、双压(中心)和单压预冷(右)进行循环。在这些循环中,处理后的流体也是工作流体。克劳德循环的修正是海兰特和卡皮扎循环,而进化是柯林斯循环,这在这里没有显示。(a)简单或单压,(b)双压,(c)单压预冷。


    • 所有这些循环都使用要液化的流体作为工作流体(制冷剂)。从技术上讲,可以将过程流体与工作流体分开,采用级联循环(图 2.5a),即一系列在不同纯流体上运行的蒸汽压缩系统,每个纯流体在单独的闭环中在给定温度范围内运行,蒸发器作为下一个底循环的冷凝器;或者采用混合制冷剂循环(图中未显示),制冷剂流体是在整个温度区间内运行的指定成分的混合物。还有一种反向焦耳 - 布雷顿循环(图 2.5b),使用纯或混合制冷剂,但仅在气相中运行,仅采用膨胀机实现冷却效果。

    • 图2.5三回路配置中的级联循环(左)和单回路配置中的反向焦耳-布雷顿循环(右)。在这些循环中,处理后的流体不同于工作流体。级联循环可以采用纯流体或所需成分的混合物。在后一种情况下,该循环被称为混合制冷剂循环,这里没有显示。(a)级联和(b)逆转了焦耳-布雷顿。


    • 在所有液化循环中,要液化的流体压力始终高于其临界压力,因为在超临界压力下,热交换器内无相变,可避免大能量传递时的小温度变化;而亚临界(纯)流体需要在恒定温度下提取冷凝能量,这对实现热交换器的高效性(或从第二定律角度减少熵产生)不利。


3. 氢在环境和低温下的热力学性质


  • 元素氢

    • 氢是自然界中最小的元素,原子序数为 1,原子量为 1.00794,自然存在两种稳定同位素(氕和氘)和一种不稳定放射性同位素(氚)。

    • 1931 年中,Birge 和 Menzel 提出存在两种稳定同位素的观点,1931 年末 Urey、Brickwedde 和 Menzel 证实了这一点。Urey 等人提出了氕和氘的名称,分别源于古希腊语中表示第一和第二的词。1934 年,Rutherford、Oliphant 和 Harteck 观察到不稳定的同位素氚。IUPAC 规定的三种同位素的命名顺序为 1H、1²H 和 1³H,而符号 D 和 T 仍常用于表示氘和氚。三种同位素的相对组成约为 99.98%、0.02% 和微量(原子基础)。近年来,实验室中合成了原子质量高达 7 的同位素。

                    图2.6原氢和副氢的平行和反平行核自旋示意图。

  • 分子氢

    • 分子氢首次由 Theophrastus von Hohenheim(也被称为 Paracelsus)偶然观察到,他注意到强酸对金属的攻击会产生一种可燃气体。其他化学家和物理学家重复了他的实验,包括 Robert Boyle,他在 1671 年描述了这种可燃气体的性质。通常认为 Henry Cavendish 在 1776 年发现产生的气体是一种新元素,并能够分离和测量其相关性质。1783 年,Antoine Lavoisier 与 Pierre - Simon Laplace 合作发现燃烧该气体在空气中产生水,并将其命名为氢。从词源学上讲,氢意味着形成、基因、水、hydro,这两个词都源于古希腊语。

    • 氢同位素可以结合形成双原子分子,由于氚不稳定且具有放射性,只有由氕和氘组成的分子 H₂、HD、D₂具有实际意义,分子氢因此是这三种分子的混合物。但由于氘相对于氕稀少,在工业应用中分子氢可近似为 H₂。

    •                        图2.7平衡时对氢浓度xpH2作为温度T (K)的函数

  • 分子氢的修改

    • 像任何其他物质一样,氢可以通过统计热力学来描述,这是物理学的一个分支,将概率论和量子力学与物质成分的微观机械模型相结合,旨在根据被测物质的微观行为预测在宏观层面可测量的性质。

    • 对于像 H₂和 D₂以及 O₂和 N₂这样的同核双原子分子,根据统计热力学理论,其核自旋的量化旋转能级分为称为正和仲的两组,一组由偶数编号组成,另一组由奇数编号组成。对于 H₂,仲系列由偶数组成,正由奇数组成。仲氢和正氢代表分子氢的两种不同类型(修改形式),它们具有自己的热力学行为。简单来说,氢的这两种修改形式的区别在于两个原子核的相对自旋。如果核自旋方向相同(平行),则称为正氢;相反,如果方向相反(反平行),则称为仲氢(如图 2.6 所示)。仲氢和正氢系列中所有氢分子的平均数量之比随温度变化,环境温度下的平衡组成称为正常氢,任何温度下的平衡组成称为平衡氢(在环境温度下,正常氢和平衡氢是相同的混合物)。

  • 分子氢修改的热力学

    • 经典热力学模型通过状态方程(EOS)计算流体远离理想气体行为的性质。过去,EOS 的公式通常明确用压力定义,而近几十年来,由于所有热力学性质都可以作为导数计算而不需要像以前那样积分,所以大多用亥姆霍兹自由能明确定义。压力和亥姆霍兹自由能明确的公式都需要一个单独的方程来计算假设理想气体状态下的比热。对于氢,McCarty 等人(1981)对大量氢性质进行了广泛而全面的报告,Jacobsen 等人(2007)和 Leachman 等人(2007)对氢的热力学和传输性质提供了两次更新。氢表现出特殊的量热行为(由比热表示)和常规的体积行为(由 EOS 表示)。

图2.8在理想气体的假设状态下,恒压下的对、邻、正常和平衡氢热容,作为温度T (K)的函数,根据通用气体常数R定义。

    • 考虑到仅核旋转能级并忽略其振动能级,仲氢、正氢、正常氢和平衡氢在 600 K 以下的假设理想气体状态下的定压比热 cp⁰(J/kg・K)可以计算。核自旋 i 等于 1/2,电子能级的统计权重 geₑ等于 1,玻尔兹曼常数 k 为 1.3806504 × 10⁻²³ J/K,普朗克常数 h 为 6.62606896 × 10⁻³⁴ J・s,分子氢的转动惯量 I 为 4.67 × 10⁻⁴⁸ kg・m²。J - 量子能级的统计权重 gJ 为:gJ = {geₑ(2i + 1) i (2J + 1), J 为偶数(仲);geₑ(2i + 1)(i + 1)(2J + 1), J 为奇数(正)},J - 量子能量状态 EJ 为:EJ = J (J + 1) h² / (8π²I)。仲氢和正氢系列中所有分子的平均数量的平衡比,即仲氢与正氢的分数 α 为:α = ∑_(J = even) gJ e⁻(EJ /kT) / ∑_(J = odd) gJ e⁻(EJ /kT),因此平衡混合物中仲氢的浓度 xpH₂为:xpH₂ = α / (1 + α)。正氢在假设理想气体状态下由于平移和旋转模式相对于通用气体常数 1R(8314.472 J/kmol・K)的热容量为:cp,oH₂⁰ / R = ∑_(J = odd) gJ (EJ /kT)² e⁻(EJ /kT) / ∑_(J = odd) gJ e⁻(EJ /kT) - (∑_(J = odd) gJ (EJ /kT) e⁻(EJ /kT) / ∑_(J = odd) gJ e⁻(EJ /kT))² + 5/2,仲氢的热容量为:cp,pH₂⁰ / R = ∑_(J = even) gJ (EJ /kT)² e⁻(EJ /kT) / ∑_(J = even) gJ e⁻(EJ /kT) - (∑_(J = even) gJ (EJ /kT) e⁻(EJ /kT) / ∑_(J = even) gJ e⁻(EJ /kT))² + 5/2,平衡氢的热容量为:cp,eH₂⁰ / R = ∑_(J = all) gJ (EJ /kT)² e⁻(EJ /kT) / ∑_(J = all) gJ e⁻(EJ /kT) - (∑_(J = all) gJ (EJ /kT) e⁻(EJ /kT) / ∑_(J = all) gJ e⁻(EJ /kT))² + 5/2。最后,正常氢的理想气体热容量被评估为正氢和仲氢的适当加权平均值:cp,nH₂⁰ = 1/4 cp,pH₂⁰ + 3/4 cp,oH₂⁰。

      通过该过程计算得到的平衡组成中仲氢的浓度和所有修改形式及混合物在假设理想气体状态下的热容量(将所有求和截断到 J 等于 10)分别如图 2.7 和 2.8 所示。从环境温度开始,平衡组成(定义为正常氢)显示出 3:1 的正氢与仲氢比,换句话说,正常氢中仲氢的浓度为 25%。随着温度降低,仲氢含量增加,在 20 K 时为 99.84%,接近 0 K 时趋于 100%。

  • 图2.9正常-氢平衡-氢焓的转换在假设的理想气体状态,Δconvhne 0,作为温度的函数,T (K),定义对通用气体常数r的焓转换的理想气体可以被认为是一个很好的近似转换在真实状态在任何压力。


    • 最近,Le Roy 等人(1990)报道了对氢、氘和氚形成的双原子分子修改的热力学性质的新的更复杂的计算,这些计算仍然被认为是氢数据的最准确来源。与 Le Roy 等人最准确的计算相比,本文描述的过程计算出的比热的相对误差最多为 1%。

    • 一方面,仲氢和正氢具有非常不同的量热行为,另一方面,它们在低温区域具有相似的体积行为,但任何差异都不显著(McCarty 等人,1981)。Leachman 等人(2009)提出了正氢、仲氢和正常氢的最新亥姆霍兹自由能明确的 EOS,但似乎还没有平衡氢的 EOS。然而,由于在低温区域平衡氢主要由仲氢组成,其体积行为可以通过仲氢的体积行为来近似,或者换句话说,可以采用仲氢的 EOS 来表示平衡氢(Valenti 等人,2012)。

    • 图2.10副氢的反演曲线和饱和曲线(McCartyetal.,1981的数据图),显示最大反演温度Ti (K)在200 K左右,远低于环境温度。


    • 由于氢修改形式的体积行为相对相似,而量热行为显著不同,在任何压力下,从正常氢到平衡氢在实际流体状态下的转化焓可以通过假设理想气体状态下它们的比热差异来很好地近似计算。

      • 图 2.9 显示了从正常氢到平衡氢在理想气体状态下的转化焓随温度的变化。从环境温度开始,转化焓为零,因为正常氢和平衡氢重合。然而,随着温度降低,转化焓迅速增加到超过通用气体常数 100 倍的值。数值上,由于氢的摩尔质量 M 等于 2.01588 kg/kmol,在 20 K 时从正常氢到平衡氢的转化焓约为 532 kJ/kg。相比之下,仲氢在 20 K 时的汽化焓约为 447 kJ/kg。因此,在温度降低时,转化焓是放热的,并且在低温区域高于汽化焓。从液化过程的角度来看,转化焓是一个额外的冷却负荷,大大增加了液化工作。

      • 在没有催化剂的情况下,正氢到仲氢的转化是二阶反应,因此正氢组成的变化率为 dx_{oH₂}/dt = C₂x_{oH₂}²,其中 C₂是反应速率常数,在正常沸点时等于 0.0114 h⁻¹。在这种情况下,从正常组成的 75% 达到某一正氢组成 x_{OH₂} 所需的时间 t(h)为 t = 1 / (0.0114)(1 /x_{oH₂} - 1 / 0.75)。例如,从 75% 到 5% 的非催化转化需要超过 2 个月的时间。因此,非催化转化是一个非常缓慢的过程。然而,在存在与氢气流充分混合的催化剂的情况下,气相中的转化接近一阶反应 dx_{oH₂}/dt = C₁x_{oH₂},其中 C₁取决于特定的催化剂以及操作压力和温度。类似地,液相中的转化接近零阶反应 dx_{oH₂}/dt = C₀,其中 C₀也取决于特定的催化剂以及操作压力和温度。由于在低温区域正常氢到平衡氢的转化强烈放热,氢液化器总是在冷却氢气流的同时催化促进正氢向仲氢的转化。

      • 根据 McCarty 等人(1981)的数据绘制的仲氢的反转曲线如图 2.10 所示。该曲线表明,最大反转温度 T₁(K)约为 200 K,远低于环境温度。因此,所有仅基于节流冷却效果的液化循环都需要通过其他方式对氢气流进行预冷才能运行。

      • 如今,美国国家标准与技术研究院(NIST)的 REFPROP 软件可能是计算氢的热力学和传输性质最准确的工具。该代码的第 9 版包含了正氢、仲氢和正常氢的详细模型。Valenti 等人(2012)为平衡氢的热力学性质计算准备了一个额外的模型,尽管不如其他模型准确,但对于实际应用来说足够准确。

    • 图2.11现代大型氢液化器基于基本克劳德循环(左),采用催化正氢至副氢转化反应器,批量模式(右,布拉查等,1994)或连续模式。(a)改良Claude和(b)最近的大规模氢液化方案。



  • 4. 大规模氢液化和储存


    • 发展历程

      • 19 世纪 80 年代初,Wroblewski 和 Olszewski 建立了第一个低温实验室,成功液化了氧气和氮气。1884 年,他们尝试液化氢时仅获得了液态小滴雾。1898 年,Dewar 在伦敦皇家研究所获得了大量液态氢,而不是雾。直到 20 世纪 40 年代末,实验室中用于连续生产的氢液化器越来越常见,但从未达到大规模和高效率。20 世纪 50 年代初,由于航空航天领域(飞机和火箭推进)和核领域(通过低温蒸馏生产氘)对液态氢的需求增加,推动了工业规模系统的建设。此后,为了满足半导体、电子、冶金和化学等行业对大量氢输送的需求,更大规模的液化器被建造。如今,小、大规模的液化器技术相对常见,具有较高的工业成熟度。

    • 分类与特点

      • 一般来说,氢液化器可分为小型(产能不超过 0.5 t / 天)和大型(产能大于 5.0 t / 天),吨(也称为公吨)/ 天是氢液化领域常用的测量单位,尽管对于较小的系统通常使用升 / 小时等单位。小、大规模氢液化器不仅在产能上有所不同,在实现液化的方式上也不同。小型氢液化通过低温冰箱实现,这是一种在闭环热力学循环中使用制冷剂来冷却和液化氢气流的系统。对于氢,采用的制冷剂是氦。氢(被处理流体)和氦(工作流体)在过程中不混合,始终保持分离。相比之下,大规模液化通过开环热力学循环实现,其中氢既是被处理流体也是工作流体。这种区别仅是技术上的,因为从理论上讲,闭环冰箱可以扩大规模,开环工厂也可以缩小规模。此外,对于非常小规模的氢液化,可以采用磁制冷器,其基于顺磁性材料(如铁铵明矾)的绝热去磁来制冷物质,甚至可低于 1 K(Barron,1985;Flynn,2005)。

      • 大规模氢液化器必须使用催化正氢到仲氢的转化反应器,因为如第 2.3.4 节所述,该反应高度放热且否则非常缓慢。该反应如此放热,以至于相关的转化焓大于储罐压力下的汽化焓。简而言之,如果在液化过程中正氢未转化,转化将在储罐中发生,释放的能量足以蒸发该储罐中的全部内容。

      • 氢液化工作强烈依赖于入口条件(压力和温度)、出口条件(饱和压力和仲氢含量)和环境温度。假设气态氢进料为 1 巴和 288 K,饱和液体产品为 1 巴,环境温度为 288 K。如果出口组成是正常的 75% 正氢和 25% 仲氢,则理想液化工作为 11.5 MJ/kg(3.19 kWh/kg);如果组成处于平衡状态,则为 13.6 MJ/kg(3.78 kWh/kg)。因此,氢液化工作即使在理想情况下也很大,约为低热值 120 MJ/kg 的 10%,在正氢到仲氢转化的情况下更大,比无转化情况大 18% 左右。如果入口压力为 20 巴(这是许多氢生产过程的典型情况),而不是 1 巴,则对于有和无转化的两种情况,理想液化工作分别为 7.89 MJ/kg(2.19 kWh/kg)和 9.97 MJ/kg(2.77 kWh/kg)。因此,将入口压力提高到 20 巴可将理想液化工作减少 25 - 30%。

    • 当今技术

      • 2003 年世界氢液化能力估计约为 290 t / 天,2009 年约为 355 t / 天,其中最大容量(超过总量的 84%)位于北美,亚洲占超过 8%,欧洲占近 7%,其他大陆的容量要么可忽略不计,要么为零。最大的运营工厂(额定产能超过 30 t / 天)位于北美。考虑到氢的低热值(120 MJ/kg),世界总容量约为 500 MW,这远低于第 2.1 节中设定的单个液化器 1500 MW 的要求,表明基于氢的大规模移动性需要比当前大至少两个数量级的基础设施。

      • 当今的大型氢液化器基于原始预冷克劳德循环的修改,通常如图 2.11a 所示,通过机器的氢膨胀被分为两个过程,通过热交换器进行额外冷却。预冷可通过专用制冷循环或当液化器位于空气分离单元(ASU)附近时通过该单元的液氮来实现。正氢到仲氢的催化转化可以采用间歇模式或连续模式。如果是间歇模式,反应器可以是绝热的或等温的,等温反应器浸没在液氮或液氢浴中。如果是连续模式,催化剂放置在热交换器内。考虑到液化工作需求,连续转化绝对更高效,因为转化本身释放的能量在尽可能高的温度下被提取,需要的液化工作最低。相反,间歇转化释放的能量在反应器的温度下被提取,该温度低于连续情况,导致更高的液化工作(Lipman 等人,1963)。通常,氢液化器设计为生产仲氢含量大于 95% 的液体。图 2.11b 显示了直到最近由林德股份公司拥有和运营的英戈尔施塔特工厂的现代氢液化器的工艺方案,该方案展示了所有的氢进料预冷、对基本克劳德循环的修改以及使用间歇转化概念。

      • 大规模液化器中的氢压缩机通常是正位移往复式机器,要么是油浸式的,要么更好的是无油式的。如果是油浸式的,需要精确的油分离以防止液态氢产品受到污染。氢膨胀机则是带有油轴承或更好的是气轴承的动态离心涡轮机(Ohlig 和 Bischoff,2012)。涡轮机通常有一个油制动电路来消散膨胀机的输出,这是压缩机输入的一部分,尽管理论上提取的机械能可以在过程中回收和使用。铝翅片板式热交换器通常用于氢液化器,因为它们紧凑且能够允许非常低的内部温度接近,低至几开尔文。膨胀机和热交换器放置在真空绝缘容器(称为冷箱)中,以减少从环境到过程的能量泄漏,因为过程温度要低得多。

      • 目前运行的液化器的工作需求在 30 - 45 MJ/kg(约 8 - 12 kWh/kg)范围内,具体取决于特定工厂的规模和年龄,入口压力约为 20 巴,仲氢含量至少为 95%。与理想需求 9.97 MJ/kg(2.77 kWh/kg)相比,运行中的液化器的第二定律效率在 22 - 33% 范围内。新设计的氢液化器声称工作需求低至 25 MJ/kg(7.0 kWh/kg),导致 40% 的第二定律效率,这实际上是一个显著的成就。

      • 一旦液化,氢被储存在高达 300 m³ 的低温储罐中。储罐通常是圆柱形的,可以水平或甚至垂直放置以减少占地面积,但对于更大的应用,它们可能是球形的,因为球体具有最低的面积与体积比。例如,美国国家航空航天局(NASA)使用球形容器来储存液态氢和用于为火箭提供燃料的液态氢。低温储罐采用复杂的材料来减少从环境到储存流体的导电和辐射能量流,并采用真空绝缘夹套来消除对流流。现代大型低温储罐的每日蒸发率(即蒸发量)可能甚至低于总储存量的 0.1%/ 天。

    • 未来技术

      • 许多研究人员建议对传统的大规模氢液化器进行重大改进,主要目标是最大限度地减少液化工作需求,同时将工厂规模增加甚至一个数量级。在最近的一项工作中,Quack(2002)提出了一种大规模液化器的概念设计,包括三个部分:(i)通过组织在三个压力水平上的丙烷制冷循环进行预冷。然后,(ii)通过氦 - 氖反向布雷顿循环进行冷却。最终,(iii)将加压氢气流节流至储存条件,并在冷区重新压缩在等焓膨胀过程中蒸发的部分。预测的第二定律效率超过 50%。Valenti 和 Macchi(2008)报告了基于四个氦反向布雷顿循环的详细过程的数值结果,所有这些循环都组织在一个级联中并共享相同的最大压力。该提议的过程不采用预冷,而是使用膨胀机而不是节流阀来达到液体储存条件。膨胀机允许避免形成必须在冷端重新压缩或在环境温度下进行回热的蒸发部分(见第 2.2.2 节)。该过程预测的第二定律效率接近 50%。Berstad 等人(2010)、Krasae - in 等人(2010b)和 Krasae - in(2014)建议采用基于首先(i)通过类似于天然气液化技术的混合制冷剂循环进行预冷,然后(ii)通过氦 - 氖循环(在前者情况下)或四个氢反向布雷顿循环(在后者情况下)进一步冷却的液化器。这些过程预测的第二定律效率在 45 - 48% 范围内。

      • 一些国际项目专注于改善液氢的跨国甚至跨大陆的液化和运输。日本的世界能源网络(WE - NET)项目(1993 - 2002 年)专注于实现一个全球网络的引入,以开发丰富的可再生资源并通过液氢进行分布。在该项目中分析了许多液化方案,包括修改的克劳德循环、氦反向布雷顿循环、混合制冷剂循环、带有低温压缩机的氖循环和氖氦混合物(nelium)循环(Fukano 等人,2000)。大约在同一时间,欧洲 - 魁北克水电 - 氢试点项目(EQHHPP)评估了在加拿大从可再生电力生产氢,然后将其液化并运往欧洲的技术经济可行性(Drolet 等人,1996)。最近,从 2008 年到 2012 年,美国能源部在氢能和燃料电池计划内支持研究活动,以开发基于有源磁再生液化器和一次性氦反向布雷顿循环的成本和能源有效液化过程。从 2011 年到 2013 年,欧洲共同体在燃料电池和氢联合技术倡议下支持高效先进氢液化综合设计(IDEALHY)项目,旨在设计大规模高效液化器、研究安全问题并评估整体技术经济可行性。2012 年,一个由日本公司领导的工业联盟发起了 HyGrid 项目,以研究在澳大利亚从煤炭生产氢、将其液化并运往日本的可行性。


    5. 优缺点


    • 优点

      • 氢是一种有价值的能量载体,因为它使用方便且清洁。

      • 氢在质量基础上具有非常高的能量含量,而液氢具有缓解体积能量含量低的问题的优势。

      • 当今氢液化是一种成熟且经过验证的技术。

    • 缺点

      • 氢液化工作能耗高,即使在理想情况下也高达 10 MJ/kg 或更多,实际中更是达到 25 MJ/kg 或更多。

      • 氢在低温下(1 巴时饱和温度低至约 20 K)以液体形式存在,管理这种低温流体可能需要特殊的技术和注意事项,而这些在当前并不常见。


    6. 液氢的当前用途


    • 目前,氢主要以气态形式被石油化工、制药、冶金、电子和食品等行业使用。

    • 航空航天机构直接将液氢用作推进剂,例如美国国家航空航天局(NASA)的新太空发射系统基于液氢和液氧推进。

    • 液氢也直接用于电子和冶金行业的特定生产过程。

    • 尽管最终用途不同,但当消耗量大时,在中距离范围内,氢以液体形式运输和储存更经济。


    7. 进一步信息和建议的来源


    • 感兴趣的读者可以首先参考 Barron(1985)和 Flynn(2005)这两本著名的教科书。

    • 读者还可以查找本文中引用的其他报告和文章。

    • 一般来说,详细信息可以从该领域的两个参考期刊中获取:《International Journal of Hydrogen Energy》和《Cryogenics》。

    • 此外,《International conference on cryogenics》《World Hydrogen Energy Conference》和《World Hydrogen Technologies Convention》的会议记录也可能是有价值的数据来源。


来源:气瓶设计的小工程师
ACT振动燃烧化学燃料电池电路半导体通用航空航天冶金汽车UM理论材料NVH
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-10-14
最近编辑:18天前
气瓶设计的小攻城狮
硕士 从事IV储氢气瓶行业。
获赞 20粉丝 40文章 159课程 0
点赞
收藏
作者推荐

低温压缩氢气,是储存和加氢站的最佳解决方案吗?

氢能被认为是减少二氧化碳排放和应对日益严重的气候危机所需的能源转型的关键部分。在2022年9月的报告《氢能洞察2022》中,氢能委员会重点介绍了680个全球大型项目,这些项目将在2030年前在氢能领域投资2400亿美元——自2021年11月以来增长了50%。该报告还引用了发动机制造商康明斯(美国印第安纳州哥伦布)执行董事长汤姆·莱恩巴格的话:“要迈向零排放的未来,我们必须为世界各地需要不同应用的客户提供多种解决方案,而氢能将发挥至关重要的作用。”氢气市场也需要多种解决方案,以满足乘用车与重型卡车、大型飞机与小型飞机等储存和加油的不同要求。我曾在2020年和2021年的专题文章中写过关于IV型压缩氢气(CGH2)罐的文章,而最近的文章讨论了重型卡车和航空用液氢(LH2)罐(参见“展示商用飞机用复合LH2罐”和“ZeroAvia2027年推出LH2罐,取得进展”)。低温压缩氢气(CcH2)为运输/移动应用中的车载储罐提供了第三种选择。氢储罐类型。图片来源:第61张幻灯片“碳纤维复合材料和氢经济:机遇与挑战”,作者:MikeFavaloro、GingerGardiner和JeffSloan,碳纤维2022大会。如上图所示,CcH2储罐提供了LH2和CGH2存储的混合解决方案。通过使用低温(例如40-80K/-233°C至-193°C)和中压(例如350bar),宝马消除了LH2的沸腾问题(LH2沸点高于-253°C),并实现了比CGH2和LH2高得多的存储密度。在2010年至2013年的演示中,宝马介绍了一款原型CcH2系统,该系统可在不到5分钟的时间内完成加氢,续航里程超过500公里。该系统使用235升复合包裹压力容器(COPV)作为内罐,并在内罐和金属外罐/夹套之间使用低温绝缘。据报道,这款CcH2罐在350巴下储存了7.1公斤氢气,而标准的350巴和700巴CGH2罐分别储存了2.5公斤和4.6公斤氢气,重量密度为5.4%重量百分比,蒸发率低于每年1%。该罐被拉长以适合汽车的中央通道。参与这项工作的关键研究人员之一是TobiasBrunner博士。2015年,Brunner博士离开了公司。2020年,他与他人共同创立了Cryomotive(德国格拉斯布伦),并获得了宝马的关键专利,以将其CcH2技术应用于卡车、商用车和飞机。Cryomotive已经为卡车制造了全尺寸的演示罐。一旦投入商业化,这些罐的直径将在600至700毫米之间,长度将在2,350至2,650毫米之间,可在两罐至四罐系统配置中容纳75至115公斤的CcH2气体。它们将采用III型(铝制内衬,外覆碳纤维/环氧复合材料)内压容器,该容器被包裹在铝制外壳中,并通过真空多层绝缘(MLI)与外壳隔开。MLI由多层铝箔和玻璃纤维绒组成,以防止辐射传热。非导电复合材料悬架/支撑将内罐保持在外罐内的位置。2022年9月,Cryomotive宣布已委托Mikrosam(马其顿普里莱普)生产自动缠绕机。“我们建立了制造能力,因为世界上没有人拥有这种尺寸的卡车缠绕油箱,”Brunner说。“我们还开发了一种新的HRS概念,其中包括我们与合作伙伴共同开发的新泵和新喷嘴。它是世界上容量最高的喷嘴,速度为15公斤/分钟,而且非常紧凑。”Cryomotive的目标是到2025年首次在重型卡车上实现商业应用,到2026年扩大生产规模,生产数百个CcH2储气罐,到2027年生产数千个储气罐。Brunner指出:“该技术也可能是小型飞机和小型船舶的完美解决方案。”低温气体:介于两个极端之间Brunner解释说,低温压缩氢存储系统“是一种绝缘压力容器,里面装满冷氢气(我们称之为CRYOGAS),其密度比700巴环境温度下的氢气高80%,最高可达80克/升。”密度越高,油箱中存储的氢气燃料就越多,行驶距离就越长。密度最高,加氢站(HRS)的工作量更少。Cryomotive声称CcH2不仅为车辆储罐中的H2提供了最高的密度,而且需要更少的调节工作量和相应的加氢设备,无论HRS是以压缩气体H2(顶部)还是液态H2(底部)作为燃料。图片来源:Cryomotive和BMWBrunner表示,CcH2提供了一种介于常温高压(700bar)下的CGH2与常压下沸点低于-253°C/20K的LH2之间的解决方案(见上图“BMWCcH2存储,密度大于LH2的低温气体”)布伦纳说,高压气体“要求车辆油箱内有压缩气体。要加气,需要一系列压缩机和大量高压缓冲罐,以及预冷至-40°C。”[见右上图]。预冷是必要的,因为IV型储罐不得超过85°C,以防止塑料罐衬里和密封件退化。快速加气会增加氢气和衬里的温度。因此,法规要求CGH2在分配到700巴油箱之前必须冷却至-40°C,在加气到350巴油箱之前必须冷却至-20°C。为了举例说明这需要多少成本,Brunner介绍了氢燃料电池卡车制造商Nikola(美国亚利桑那州凤凰城)提出但很快放弃的加氢站(HRS)概念。“他们提出了一个太阳能加氢站,每天的加氢能力为8吨氢气,”他说。“这将需要4,000公斤的高压缓冲罐,成本为每公斤1,500美元,以及多个压缩机,每个压缩机100万美元——因为没有一台压缩机能够以每分钟5到8公斤的速度直接供给重型卡车快速加氢。它还需要冷却器来预冷氢气。资本支出和所需的大量能源令人震惊。”Brunner补充说,700巴的CGH2也需要大量的碳纤维来控制车辆油箱中的压力。这是一个巨大的问题,因为目前生产的碳纤维不足以满足所需的高强度要求——例如,4.9千兆帕斯卡,这是东丽(日本东京)T700碳纤维制定的标准。“东丽纤维现在真的买不到了,”他说,“而且成本已经暴涨。例如,对于一个700巴的卡车油箱,仅碳纤维的成本就高达20,000至35,000美元。”另一方面,低温液氢确实降低了加氢站的成本,Brunner说道,“因为你可以将液氢储存在大型金属罐中,并直接泵入车辆,但你需要冷却所有管线,否则沿途以及车辆油箱中都会有损失。”损失来自液氢沸腾成蒸汽时需要排气以释放压力。在航天器上,液氢也储存在必须保存在低温下的不锈钢或铝制罐中。尽管它们不需要主动冷却(例如动力冷却器)或碳纤维,但价格不菲。Brunner指出,它们的热泄漏必须为5瓦每小时或更低。这就要求内罐和外罐采用杜瓦瓶结构(通常均为金属),并由MLI在压强低于10-4帕斯卡的高质量真空中隔开。Brunner说,这种真空生成需要长达两周的加热,才能达到内部必要的真空,还需要多个管道和系统来控制液体和气体的流量和压力平衡。这种液氢罐也很重,过去的结构要求内容器壁为3至4毫米厚的不锈钢或铝。请注意,戴姆勒卡车、氢气供应商林德和萨尔茨堡铝业集团(SAG,奥地利伦德)正在开发LH2罐,他们声称使用过冷LH2(sLH2)的罐更薄、更经济。“这是一个概念,”Brunner解释说,“它们在高达16bar的超临界压力下加注燃料。”超临界意味着压力高于临界点,即液相到气相变的压力-温度曲线上的最高温度(见下图中的紫色区域)。“因此,他们将LH2压缩到几乎低温压缩状态-但不是我们使用的高压-并进入超临界区域,以避免sLH2在通往车辆的途中蒸发。在运行过程中,他们让罐内的压力降至5-6bars的两相状态-即同时包含液体和气体。”Brunner补充说他并不赞成这种方法,因为只有在预处理储罐和加油站的情况下,才能避免加油站和车辆上的蒸发损失。“我花了好几年时间开发氢储罐,”他解释道。“那是我在宝马的第一份工作。经过35年的研究,我们放弃了它,因为加油不可能没有损失。你不仅必须冷却所有管路,而且通常还需要给储罐减压,然后才能注入新鲜的氢。在宝马运营的车队中,在加油之前,仅仅为了冷却系统,就需要使用大量的氢。”为什么CRYOGAS是一个解决方案在研究LH2储罐之后,Brunner在宝马公司从事CcH2的开发工作超过五年。“我们发现,如果将LH2压缩成30或40兆帕[300或400巴]的低温气体,基本上可以增加其密度,”他解释道。“这是第一个没有人相信的假设,但我们与林德公司合作制造了一个泵,并证明我们可以生产30兆帕的高压低温气体,密度为80克/升,而LH2的密度为65至70克/升。”上图反映了Cryomotive为卡车开发的进一步成果。其CcH2系统仍提供比LH2更高的密度,同时保留了气体的优势。“我们没有可以蒸发的液体,而是气体,它本身就具有热稳定性,”Brunner说道。“例如,当您将CRYOGAS放入温暖的管线或油箱中时,它只会失去密度并稍微膨胀,但不会发生大的密度变化。因此,我们消除了沸腾问题,无论油箱是热的还是冷的,都可以为油箱提供燃料。这个概念具有革命性,并且已在BMW证明行之有效。”Brunner进一步解释道:“基本上,你可以将新鲜的LH2泵入CRYOGAS,这样你就不会损失任何氢气。或者,你可以用非常冷的H2气体将其过度填充。当你启动车辆,假设你将油箱从三倍过度填充状态排空至700巴CGH2油箱的密度时,你又会进入气态区域。因此,我们一直都是一个油箱——如果你愿意的话,只是一个过度填充的油箱,里面有非常冷的气体,当油箱排空时,这些气体会汇聚成温暖的气体。”因此,CRYOGAS储罐中充入CcH2,压力高达400bar,然后随着车辆行驶和CcH2排出,压力会降低。Brunner表示,CRYOGAS储罐将在明确规定的温度范围内输送低温GH2作为燃料,压力可调至3MPa(30bar),以供应燃料电池或H2内燃机。与LH2储罐类似,CcH2储罐也有一个内部热交换器。“我们可以通过内部热交换器自由控制储罐中的压力水平,”他补充道,“但决定不超过30bar,因为这会导致加油后储罐温度升高,平均密度(容量)降低。”低温动力车加注开发Brunner重申CcH2可以降低HRS成本,这是一个显著的优势。“关键在于我们的技术不需要缓冲器、热交换器、预冷和通信,而是使用往复式活塞泵直接加注燃料,成本非常低。”重申一下,使用LH2加气仅需要成本较低的泵和分配器。然而,Cryomotive还希望在没有LH2的情况下为CcH2罐加气,这意味着使用CGH2。此选项确实需要使用CRYOGAS压缩机和膨胀机——这很可能是站内的一个连接设备——但仍然不需要预冷、热交换器或通信。没有通信?“车载CGH2油箱需要与HRS进行通信,以避免过热,”Brunner解释道。“开始加气时的压力冲程可确定油箱压力。系统还必须知道油箱外部和内部的温度。然后,查找表会提供正确的压力坡度,并确定加油速度。”正如他上面所解释的那样,加油太快会导致油箱温度超过85°C,这是不允许的。“因为油箱可能热或冷,外部环境温度也可能热或冷,所以加油站和车辆油箱之间需要进行通信,以告知加油站允许的加油速度。”“对于CRYOGAS来说,这没有必要,因为我们不会过热,”Brunner说道。“我们的储罐温度永远不会达到85°C,因为我们在低温下操作,由于氢气的热力学性质,压缩产生的热量可以忽略不计[见上图]。”“我们甚至可以以每小时1,000公斤的速度泵送,”他继续说道。“我们正在与合作伙伴共同开发这种设计简单的泵。我们可以自信地预测,它可以以每小时500公斤的速度泵送-每分钟8公斤-而且成本非常低-低于250,000美元。”Cryomotive正在与FivesCryomec(瑞士阿尔施维尔)合作,开发和验证其用于CRYOGAS加气站的CryomecHy-Filling往复泵。FivesCryomec首席执行官XavierNicolas表示:“作为全球低温领域的领导者,Fives数十年来一直处于氢气领域的前沿。我们已经生产了8,000多台泵……并期待与Cryomotive一起开发这种新型号,以提升卡车和重型车辆的绿色出行能力。”“每个CRYOGAS加油站只需要一个这样的泵,”他补充道,“再加上一个液体散装储存器和分配器。你可以用不到100万美元建造一个CRYOGAS加油站,它可以为一辆又一辆卡车加油,无休止地连续加油。这就是我们认为这项技术如此重要的原因。它在车辆上有很多优势,但对HRS来说优势更大。“我们进行了成本分析,包括总拥有成本(TCO),资本支出、运营支出、管理费用和利润,”Brunner说道。“与700巴CGH2相比,我们的成本只有1/5。因此,如果我们需要100万欧元,那么他们需要500万欧元才能达到每天4吨H2的相同产能。即使与非常经济的LH2相比,我们的成本仍然更低,但我们没有他们那样的H2损失问题。”常见问题解答宝马为何放弃?“与电动乘用车电池相比,氢气被视为小众市场,”Brunner说道。“700巴的气罐被认为足够了。当时没有人要求像现在卡车那样具有更高容量的储存空间。对于宝马来说,乘用车油箱所需的碳纤维量并不高,因为您只需要储存几公斤H2气体。您仍然需要加油所需的努力,但与卡车相比,您只需要几个缓冲器、一个较小的压缩机和一个较小的预冷器。因此,700巴CGH2气罐成为主流。”CcH2系统不是既复杂又昂贵吗?“它是一种具有超强绝缘性的压力容器,”Brunner承认,“但这种绝缘性比LH2罐所需的绝缘性要简单得多。真空度低了一个数量级,因此您无需花两周时间在烤箱中加热以达到必要的质量,而且MLI可以预制,无需在清洁环境中缠绕在容器上。我们将复合材料缠绕在内罐衬里上,安装预制的MLI,将外护套焊接封闭,然后加热以达到真空,我们可以相当快地完成这一过程。这也是一种更坚固的系统。我们的罐可以承受一些对流和一些接触部件。LH2罐不能。事实上,我们可以允许的热泄漏比LH2罐多10倍。”是否需要主动冷却?“不需要,”Brunner说道。“我们使用的隔热材料足以保持系统冷却。驾驶卡车时,您会从隔热油箱中排出冷气,而冷气会自行冷却油箱—这只是热力学原理。即使您加了温气,再次驾驶时,油箱也会再次冷却,并回到工作范围的高密度区域。因此,我们永远不需要主动冷却,而是系统通过使用和排放氢气自行冷却。”如果卡车闲置,会发生什么情况?“首先,CcH2系统比LH2系统吸收的热量多得多,而且如果CcH2储罐半空,它实际上可以闲置更长时间。例如,半满时,它可以闲置两周,然后才需要排气。无论如何,商用车不断运行,需要大量能源,因此这是我们技术的完美应用。”保持储罐绝缘真空度是否存在问题?是否需要重新检查?“我们确实需要保证真空度不会下降太多,但储罐可以保持所需的真空质量足够长的时间。进行正常的维修检查后,将储罐连接到真空计或泵,读取真空度并在必要时重新施加真空压力。使用非常简单的压力传感器也很容易现场监测压力。如果压力增加,意味着真空质量变差,那么您可以重新施加真空压力。”为什么这比储罐制造过程中的时间短?“第一次抽真空必须抽出水分和其他污染物;完成此操作后,重新抽真空会更快。”商业化时间表Cryomotive正在与重型卡车制造商MAN(德国慕尼黑)以及CleanLogistics(德国温森)合作。“MAN还拥有Navistar,”Brunner指出,“而CleanLogistics宣布从德国GPJoule订购5,000辆卡车,但他们还收购了荷兰的卡车制造商GINAFNederland,以拥有自己的平台,并且他们也在改装/改装卡车。对于这两家公司,我们正在构建相同的系统——车架左侧和右侧各一个油箱。这适用于任何卡车,因为这就是如今欧洲和亚洲卡车上的LNG[液化天然气]或柴油油箱的位置。”Brunner表示,Cryomotive的目标是“在2025年初让第一批配备我们系统的卡车投入运行。我们正在努力在那时获得全面验证。我们已经进行了大量循环测试和其他认证工作。我们还与我们的合作伙伴兼种子投资者ChartIndustries[美国佐治亚州BallGround]在同一时间表内共同建造了第一批加油站。”Chart在H2加气和HRS市场拥有良好的声誉,将提供LH2和CcH2加气和储存服务。“我们决定我们的战略必须包括卡车和加气站,”Brunner说道,“因为如果我们只建造卡车的车载储气罐,而没有人建造使用这些储气罐的加气站,那么我们就会失败。因此,我们必须为加气泵和加气嘴开发出非常好的概念。现在我们正在着手建造我们的第一个加气站。在演示了第一个CRYOGAS站和带有CcH2罐的卡车后,Brunner预计从2025年中期到2026年将进行小批量生产——数百套系统。“2027年至2028年将生产数千个罐,”他补充道。“那时戴姆勒卡车和所有大型卡车制造商都计划大量销售H2/燃料电池卡车。我们的时间表非常符合这一目标。我们自己也有生产能力。我们知道如何做,我们正在研究如何增加生产线和扩大规模。将所有核心部件制造都纳入内部制造是一项巨大的投资,但我们不想依赖价值链中任何可能拖慢我们速度的人。”航空低温气体如前所述,Cryomotive的目标不仅包括卡车和商用车,还包括航空。然而,目前该行业几乎所有的储罐开发都围绕着LH2展开。为什么?“因为它更轻,”Brunner说。“我们可以达到8-10重量%[wt%=kgH2/kg储罐,或储存效率],这比70MPaCGH2储罐的典型5-7重量%要好得多。但真正大型的LH2储罐可以达到30或40重量%。”这对于航空业来说是一个很大的优势,因为减重是重中之重。为什么大型储罐的效率如此之高?因为在环境压力下,随着尺寸的增加,液氢储罐的体积与表面积(V/SA)比也会增加。例如,随着球形储罐直径从1米增加到6米,V/SA会从0.7增加到2。将圆柱形储罐从1×2米(直径x高度)扩展到2×8米,V/SA会从6增加到100。因此,与封装氢气所需的材料相比,可以储存更多的氢气。最大化V/SA还可以最大限度地减少导致沸腾的热传递。Brunner继续说道:“对于小型飞机,油箱尺寸较小——可容纳20至40公斤——而CcH2和LH2的重量百分比均为7-10%。但如果我们谈论数百或数千公斤,那么LH2在存储效率方面是无与伦比的。然而,它们在机上和加油过程中仍然存在蒸发和损失等所有问题。”另一个缺点是,sLH2储罐最适合向低压H2动力装置(例如4至5bar的燃料电池)供气。为了向8至100bar的增压H2内燃机或燃气轮机供气,需要额外的压缩设备。“如果储罐中的压力只有5bar,”他解释说,“那么你将需要机上所有这些低温泵来增加发动机的压力,而且它们必须是冗余的,因为不能出现故障。然而,我们的储罐仅凭储罐就能提供足够的压力。我们不需要泵或主动冷却。我们在加油过程中没有损失,但对于大型航空器来说,我们有点太重了。”对于小型飞机,Brunner认为CcH2可能是一个完美的解决方案。“我们可以快速加气;我们的安全性与LH2系统一样高,而且体积小巧,因为我们的油箱密度更高。我们非常适合航空业,我们有这个计划。”Cryomotive有兴趣与小型飞机公司进行讨论,但与此同时,它仍然非常专注于将其CRYOGAS罐和卡车及其他商用车辆的加气站商业化的时间表。信息来源:复合材料世界compositesworld来源:气瓶设计的小工程师

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈