中国科学院工程热物理研究所在压气机流场预测方面开展了系列研究。借助深度学习强大的非线性特征提取能力,建立了深度注意力对称神经网络模型(DASNN)对压气机不同径向位置处流场进行重构。通过对压气机逐排建模,并对三维流场进行切片处理,将复杂的三维建模问题转化为较为简单的二维流场预测,大大降低了神经网络模型的复杂度和数据要求。
压气机作为航空发动机的核心部件之一,对发动机的推重比、耗油率等关键性能参数产生决定性影响。当前,随着数字技术的迅速发展,通过对压气机进行全周期的数字仿真,构建其数字孪生模型,可以方便工程师清晰认识到压气机工作状态,并及时采取控制手段,减少由压气机失稳带来的巨大损失。数字孪生体能否实时准确地反映和预测其压气机运行状态,取决于对内部流场高效且精确的描述。然而,基于CFD的性能计算通常需要大量时间成本。因此,建立预测模型,实现压气机叶片通道流场特征的快速、准确预测成为发动机领域研究的热点问题,也是发动机数字孪生建模所需攻克的关键技术之一。
研究所在压气机流场预测方面开展了系列研究。借助深度学习强大的非线性特征提取能力,建立了深度注意力对称神经网络模型(DASNN)对压气机不同径向位置处流场进行重构。通过对压气机逐排建模,并对三维流场进行切片处理,将复杂的三维建模问题转化为较为简单的二维流场预测,大大降低了神经网络模型的复杂度和数据要求。关注公 众号: 两机动力先行,免费获取海量两机设计资料,聚焦两机知识和关键技术!
(a) 静叶流场重构预测大分离
(b) 动叶流场重构预测激波
DASNN网络模型主要由视觉自注意力模块(ViT)以及对称卷积神经网络模块(SCNN)两部分组成。前者用于不同工况下不同径向处叶片通道几何特征提取,后者将ViT提取特征以及转速、出口背压等其它信息作为输入,从而进行流场预测。研究结果表明,采用该方法建立的压气机流场孪生模型可以对叶片排不同位置处的静温、静压以及马赫数进行准确预测,且相对误差不超过3%,初步实现研究目标。中心研究人员将根据已有数据和建模方法开展进一步的优化工作,提升模型的预测性能和泛化能力。