DC/DC开关电源EMC仿真红宝书
点击关注“电磁学社”
“ 本红宝书系统性介绍开关电源EMC仿真方法,包括仿真原理、仿真思路、仿真工具以及仿真效率提升与仿测一致性的实战经验。从理论到仿真,从仿真到应用,真正帮你实现一文掌握开关电源EMC仿真!全文约14000字,适读人群:开关电源设计、电磁兼容EMC相关从业者,电磁相关专业研究生及CST仿真爱好者等。内容及附件仅供个人学习使用,未经许可请勿扩散!”
关键词:电源EMC,场路仿真,器件模型,电压法CE,数据后处理,窗函数,CISPR标准,EMI接收机,虚拟验证,EMI噪声分离,滤波器量化设计,Layout优化,Mosfet高频模型,Snubber电路设计,展频SSC技术 01 导读
搞硬件开发的朋友都或多或少有过一个感觉:EMC是一个相对玄学的东西,在未开展EMC测试前,所有的理论设计都存在未知数。而要说EMI最主要的来源,那非开关电源莫属。尤其是当下产品越做越小,功率密度越做越高,开关高频化、芯片集成化,使得EMC问题愈加复杂。
本文以目前最常见的非隔离式DCDC电源——BUCK变换器,作为仿真分析对象,详细介绍了在CST软件中如何进行开关电源的EMC仿真,具体章节内容安排如下。
第一部分(理论基础):第2、3节介绍同步BUCK电路的工作原理及噪声机理、噪声路径与噪声特性;
第二部分(仿真方法):第4节介绍PCB导入CST的方法,介绍端口设置要点;第5节介绍仿真的底层原理,CST电路仿真方法与电路搭建以及在EMC电路仿真中的关键设置;第6节介绍PCB+Schematic的场路联合仿真方法,以及在EMC仿真中的关键设置;第7节介绍仿真结果的后处理方法:快速傅立叶变换FFT设置技巧、不同窗函数的应用场景等,以及模拟CISPR法规要求的EMI接收机与法规限值线的报告出图方法;
第三部分(优化仿真):第8-13节作为本文的核心章节,详解如何在软件中对开关电源的各种EMC优化措施进行虚拟验证,包括:展频SSC技术模拟、驱动信号优化、差/共模噪声提取与滤波电路插损量化设计、Bypass电容选型、Layout电流环路与开关节点SW优化等各种EMC措施与对应的仿真技巧。某种意义上讲,这些EMC优化仿真相当于一次预先的EMC摸底与整改测试,可以为企业节省一笔巨大的研发投入与时间成本;
第四部分(经验总结):第14节总结开关电源EMC仿真的要点,介绍提高EMC仿真精度与仿测一致性的方法,为高阶EMC仿真用户提供工程参考。
第五部分(文件下载):第15节为本文引述的文献资料,第16节为付费读者提供PDF资料以及本文仿真源文件的下载途径。
01 导读
02 BUCK电路介绍
03 BUCK电路噪声机理
04 EDA导入操作
05 电路仿真方法与关键设置
06 场路仿真方法与关键设置
07 数据后处理(模拟EMC法规要求)
08 EMC优化仿真:展频SSC
09 EMC优化仿真:驱动信号
10 EMC优化仿真:噪声分离与滤波器量化设计
11 EMC优化仿真:Cbypss电容
12 EMC优化仿真:Layout优化
13 EMC优化仿真:开关节点SW
14 总结
15 参考资料
16 源文件下载
本文以同步BUCK电路为例对电源EMC仿真进行系统性剖析:包括电路仿真、场路仿真、仿真结果后处理以及EMC优化等内容。此外,提供了本文所有章节的仿真源文件下载,结合仿真工程让你从0到1快速掌握开关电源的EMC仿真技术。
BUCK拓扑的工作原理,简单描述就是通过控制开关管Q1的通断,配合续流二极管D以及储能电感L来实现DC-DC降压变换。根据BUCK电感的电流在每个周期初始状态是否从零开始,可将其工作模式可以分为:连续模式(CCM)、临界连续模式(BCM)以及断续模式(DCM),下图是电感电流连续模式CCM下的工作波形。
BUCK变换器根据续流管采用二极管或MOS管,又可以分为异步整流与同步整流BUCK。同步整流BUCK,即续流管采用Mosfet,由于Mosfet较低的导通电阻(通常为mOhm级),导通损耗比二极管更低,因此效率更高而得到广泛的应用。
关于BUCK电路的工作原理、公式推导等内容,不是本文的重点,原理介绍仅作抛砖引玉。MOSFET在开关过程中,会导致环路电流与节点电压快速变化(较高的di/dt与dv/dt)产生了开关频率fsw及大量倍频谐波噪声。为追求极致的电源小型化,开关频率越做越高,使得电源噪声覆盖至更高的通信频段。1)当Q1导通时,电流从Cin流出,经Q1和L1后进入输出电容Cout和负载Rload,再通过地线返回输入端,其电流路径如下图红线所示。2)当Q1截止后,同步整流管Q2导通,由于电感电流无法突变,会保持原方向流动,此时的电流经L1、输出电容和负载,经地线与整流管Q2回流至L1,其电流路径如下图蓝线所示。电流I1和I2都是不连续的,它们在发生电流切换的时候都存在陡峭的上升沿和下降沿,因而存在很高的电流变化速度di/dt,存在很多高频成分。从电磁辐射的角度来看,阴影A1区域是存在高电流变化率di/dt的回路部分,这个回路将生成最多的高频成分,因而在BUCK电源的EMC设计中需要被重点考虑。
差模DM和共模CM信号代表两种形式的传导发射。DM电流通常称为对称模式信号或横向信号,而CM电流通常称为非对称模式信号或纵向信号。DM噪声电流 (IDM) 由变换器固有开关动作产生,并在正负电源线L1和L2中以相反方向流动。DM传导发射为“电流驱动型”,与开关电流 (di/dt)、磁场和低阻抗相关。DM噪声通常在较小的回路区域流动,返回路径封闭且紧凑。CM噪声电流 (ICM) 会流入接地 GND 线并通过L1和L2电源线返回。CM传导发射为“电压驱动型”,与高转换率电压 (dv/dt)、电场和高阻抗相关。在BUCK电路中,由于 SW 节点处的dv/dt较高,产生了CM噪声,从而导致产生位移电流。该电流通过与 Mosfet 外壳、散热器和 SW 节点走线相关的寄生电容耦合到 GND 系统。与转换器输入或输出端的接线较长相关的耦合电容也可能构成 CM 噪声路径。
3)差/共模辐射噪声
除了传导噪声外,由于电源线中流动着变化的噪声电流,还会产生辐射噪声。差模噪声导致的辐射场强与环路面积大小S强相关,共模噪声导致的辐射场强与线缆长度L强相关。在噪声电流值相同的情况下,共模辐射噪声要比差模辐射噪声高的多。关于BUCK电路的辐射噪声优化的内容,将在第12节Layout优化中展开介绍。
了解完BUCK电路的噪声来源,再看下它的噪声特性,开关节点电压波形及其频谱包络如下图所示,噪声分量主要受脉冲宽度(占空比Duty*开关周期Tsw)和上升(Tr)/下降(Tf)时间的影响。
这里用Ansys Circuit搭建简单BUCK电路进行对比:下图所示,是一个25V转5V的同步整流BUCK的主电路,开关频率为200kHz,驱动信号信息在图中标注。
现在我们将其上升/下降时间均设置为变量Trise,并取不同的值为10ns,50ns,100ns,其他参数(如死区时间Tdead等)均保持不变,可以看到在仅改变Trise的情况下,BUCK的输出电压始终能稳定在5V,只是电源启动过程中振荡的波形发生了一点变化,这种ms级别的微小变化在Vout波形上几乎感觉不到。
但是,此时再看下在LISN上采集到的电压噪声:随着Trise的增大,FFT得到的噪声出现明显降低。
这也意味着,我们可以通过改变MOS管的上升/下降时间来实现EMC优化。开关的速度越慢,BUCK的噪声分量衰减的越快,高频的EMI噪声也就更弱。- 对于MOS分立式电路来说,可以通过增大栅极电阻Rg来同时增加导通时间和截止时间;
- 对于MOS集成的电源芯片,可以通过在自举电路中加入电阻Rboot来实现。
有人会问了,那我们为什么不直接把Mosfet的开关时间做得越大越好呢?——世间鲜有两全其美的事情,开关电源追求的目标是极致的高效率与小型化,当我们通过缓冲电路或栅极电阻等措施来增大Trise/Tfall时,带来的代价是——增加开关过程中的损耗(如下图所示,Vds与Ids交叠的区域将变大,这部分交叠区域即Mosfet的开关损耗),这样会牺牲电源的效率,也会使散热要求变的更为严格,因此需要在效率和EMC之间进行权衡。
BUCK电源的EMC理论基础暂且介绍到此。
一直以来,EMC行业被人们经常诟病的是工作非常吃经验,工程师们在对新产品EMC开发时无法对其进行量化设计,会预留大量的器件与PCB空间冗余。
当前通过电磁仿真技术,我们可以在产品设计阶段,在未进行测试的情况下就对可能存在的EMC风险进行预测与推演,并以此推动方案朝着有利于我们的方向去优化、落地。电磁仿真在EMC设计中有大量的应用案例。
仿真所代表的虚拟测试技术,在未来的产品开发中还会持续加码!下面,我们进入本文的正题部分:
一文速成开关电源EMC仿真!