首页/文章/ 详情

从小米SU7着火看电池热蔓延

3月前浏览1602

2024年9月16日上午10点03分左右,在南京南站附近道路上一辆SU7发生意外交通事故,经初步确认,车辆在行驶过程中因路面湿滑,驾驶人操作不当,导致车辆冲出车道撞向隔离花坛区。车辆前杠和底盘区域撞上隔离带周边的连续方形石块(约28cm*30cm*50cm),撞击导致电池底部严重受损,怀疑电池内部受撞击发生局部短路,出现短时冒烟和明火,并向下泄压,幸运的是仅造成驾驶员受伤。

根据微博网友提供的视频可以看到,这台小米SU7并未安装顶部的激光雷达,应该属于标准版,搭载的电池应该是弗迪的磷酸铁锂电池。

其中标准版采用了弗迪的刀片电池方案,装配了短刀磷酸铁锂电芯,整包电压达到486V,假设单体电芯上限电压为3.8V,则大概需要128颗电芯串联,每个电芯能量约为575Wh,容量约为180Ah。

从之前小米放出的工厂内部视频可以看出,小米估计是直接采购了弗迪的短刀电芯,然后在自家产线上完成涂胶和pack装配。这种CTP的模式可以大大提高装配效率,节省生产成本。

车辆高速行驶状态下,如果出现电池变形导致的热失控,的确很难通过BMS(电池管理系统)预警来减少损失,但如果电池是在日常使用时因内部老化而产生应力变化,是否有可能向车主发送警报呢?

其实在2023年的JPS杂志中,欧阳明高课题组就针对方形电芯的应力变化预警进行了研究。

研究使用了3款不同容量的电芯,并在电芯内部埋入热电偶,然后将电芯、云母板、加热片在一定预紧力下组装成简易模组,最后以一定加热功率触发单体电芯热失控,监测电芯内部应力和温度随时间变化的关系,从而得到合适的预警时间点。

实验结果表明:

(1) 热失控应变趋势可分为3个阶段:a. 稳定增长阶段:由于热膨胀和产气/聚集的耦合影响,壳体应变随电池温度增加;b. 快速升高阶段:当电池热失控触发时,隔膜收缩后剧烈的电化学反应会产生大量的热量和气体,导致壳体应变和温度急剧升高;c. 释放阶段:当阀内压力达到阀值时,气体、烟雾、颗粒从阀内喷出。电池外壳应力显著释放。此外,一些特征现象与应变曲线的变化相对应,如“第一次排气”、严重的燃烧、爆炸或“主排气”后的烟气排放。

(2)随着电池容量的增加,方形电池变厚,卷芯数增加,第一阶段的应变增量和增加速率RI不明显。然而,在快速增加阶段(Δεmax),由于大尺寸电池内部产生更多的反应物质和气体,应变增量更为显著。提出了大尺寸方形电池的Δεmax-Q、RI-Q和RII-Q方程,可用于BMS的热失控力学预警阈值定义。

(3)比常规电信号更早检测到应变增加,为热失控触发前的逃生和救援提供了更多的时间。加速侧向加热试验证明,在相同加热功率(700W)下,电池样品C的应变信号提供了500s以上的间隔。随着大尺寸方形电池在交通运输/储能领域的应用越来越广泛,应变信号对主动安全的贡献越来越大。

(4)在热蔓延过程中也可以证明各电芯的应变增加和释放。排气后,每个电芯变空变软,热失控电芯膨胀抑制邻近电芯。然而,下一个电芯的热失控不是用刚性外壳触发的。因此,在热蔓延过程中,热失控电芯只能抑制前面的电芯。碎片的变形方向与热蔓延方向相反。此外,Δεmax,在TRP过程中n一般随着电芯指数的增加而增加。

以上是笔者对于电动汽车电池热失控收集的一些信息,希望对感兴趣的小伙伴有所帮助。

小明来电⚡为你充电,我们下期再见,拜拜~

来源:小明来电
燃烧化学汽车爆炸储能工厂试验
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-10-14
最近编辑:3月前
小明来电
硕士 新能源干货,尽在小明来电~
获赞 5粉丝 5文章 119课程 0
点赞
收藏
作者推荐

从800V架构看动力电池介电保护

从2019年保时捷率先发布第一款800V高压架构的车型Taycan,到2024年小米推出871V架构车型小米SU7,800V高压架构正在成为继智驾和空气弹簧之后,各大车企的全新内卷方向。为何大家纷纷热衷于800V架构?相对于传统400V架构:1. 800V电池可以在不明显提高充电电流的情况下,接受更大的充电功率,缩短充电时间,这样既缓解了补能焦虑,又不必花大量研发成本制造高充电倍率的电芯;2. 提高电池系统电压还可以减少工作工程中的能量损失(I2*R),能在一定程度上提升续航里程;3. 800V架构搭配更轻的线束,因为系统电流可以适当下降,同时不损失输出功率;当然,800V架构也有自身的挑战,例如:1. 目前的市场仍以400V架构为主,800V架构因其更高的集成要求,目前仅适用于中高端车型,成本较高;2. 与800V搭配的超级充电桩数量有限,充电体验仍有待改善;3. 800V架构为电池系统和电子电气架构提出了更高的电气安全需求,需要采用更新的绝缘方案,从而提高了研发成本;其中一个主要关注的领域是提高介电材料的电隔离性能,它们与电池/电池组组件和热界面材料的粘附性,以及它们的易于应用。介电材料本质上通常是聚合物,并要求以下性能属性:高介电强度(100微米击穿电压≥2.8 kV)对基材附着力好暴露于化学,热和机械力后耐用适用于薄膜厚度(50-250微米)易于应用于高通量制造过程电动汽车组件需要在电池、模组和电池组级别进行电气隔离,例如电池表面、侧板/模块壁、冷却管表面、模组/电池组壁和母线。图1说明了需要电气隔离的典型电动汽车组件。目前市场上有几种类型的介电材料,本文将讨论、测试和比较其中的四种:聚对苯二甲酸乙二醇酯(PET)薄膜、粉末涂料、溶剂型涂料和紫外线固化涂料。PET是一种普遍存在的热塑性塑料,通常用于汽水瓶和服装纤维(聚酯)。它也可以被挤压成保护膜。由于其介电性能,耐化学性,耐湿气性,强度和韧性的良好组合,它通常与压敏粘合剂(PSA)层压,并用作电芯的电隔离器。表1总结了本研究中使用的介电材料及其典型性能。成本和生产率对比使用更复杂的方形电池的电动汽车厂商在定制自动化设备上投入了相当多的投资。PET在具有边缘、内角和通孔的大表面积冷却板上的应用非常有限,因为处理大型薄膜和重金属部件具有挑战性且成本太高。粉末涂层静电沉积有利有弊。粉末涂层的一个优点是多余的材料可以收集和再利用,但是在复杂的几何形状上很难达到均匀的涂层厚度。与粉末涂层相比,LORD JMC涂层的一个优点是它不依赖于静态沉积-它在需要的地方喷涂,而不是在不需要的地方喷涂。Sipiol UV采用标准的喷涂设备和标准的UV固化设备。该设备前期资金投入低。Sipiol UV应用和固化在几秒钟内需要最少的时间,劳动力和能源。此外,与LORD JMC和粉末涂层一样,Sipiol UV可以自动喷涂。击穿电压对比图3显示了击穿电压与薄膜厚度的关系,表3将数据汇总为介电强度范围。在评估的四种材料中,PET薄膜具有最高的介电强度(85-149 kV/mm),并提供良好且一致的电气隔离。粉末涂层具有最低的介电强度(41- 50kv /mm),因此需要较厚的薄膜来满足3 kV和5 kV的典型耐压。Sipiol UV涂层介电强度范围为~81 ~ 101 kV/mm, LORD JMC涂层介电强度范围为~71 ~ 110 kV/mm。Sipiol UV和LORD JMC涂层在膜厚≥90微米时均能达到> 6 kV的保护效果,与PET膜相似。综上所述,Sipiol UV、LORD JMC和PET膜可以满足>6 kV的耐高压要求,膜厚为90 ~ 120微米,而粉末涂层要求膜厚更高,膜厚>200微米。介电强度排序为PET > Sipiol UV ~ LORD JMC >粉末涂料。附着力和环境影响对比介质材料在冷热冲击循环(-40℃~ 100℃)和85℃/ 85% RH条件下的接剪粘接强度如图12所示,其破坏模式如表5所示。PET膜的粘接强度最低。压敏胶粘剂(PSA)层的主要破坏形式是内聚破坏。附着力最强的是Sipiol UV,其次是粉末涂料和LORD JMC。粉末涂层和LORD JMC涂层的主要失效模式分别为胶粘剂脱层和涂层内粘接。对于粉末涂料,结构胶/粉末涂料界面是最薄弱的环节。在结构粘合剂粘合之前,可以通过等离子体处理粉末涂层表面来改善这种界面。电气绝缘和环境影响对比在85°C / 85% RH条件下,介质涂层在热冷冲击循环前后的通过电压如图13所示。通过hipot电压定义为材料在达到击穿电压点之前所能承受的最大电压。从图13可以看出,暴露于热冷冲击循环和85°C/ 85% RH对通过hipot电压的影响很小。介质材料在加速环境试验后保持完整和电气隔离。总结特定电池组件的介电材料的选择取决于许多因素。本文对PET、粉末涂料、LORD JMC和Sipiol UV四种材料的关键属性进行了评价和比较。评估了以下属性:成本和生产率、介电强度、边缘覆盖率、导热性、冷冲击和85°C / 85% RH对粘附性和电隔离的影响。表7对这些因素进行了总结和排序。PET薄膜具有优异的介电保护性能,能承受各种环境条件。然而,它通常具有低附着力,因此它可能仅限于不需要高结构附着力的应用。粉末涂料的应用领域非常广泛,供应商的选择也非常多。它提供了优异的性能;然而,它在低薄膜厚度下具有低介电强度,并且需要大的烤箱和高温进行热固化。LORD JMC涂层具有优异的附着力、介电强度和传热性能。然而,它需要一个漫长的应用过程和高温固化。最后,Sipiol UV具有优异的介电保护,附着力和最快的生产吞吐量。然而,与粉末涂料和LORD JMC相比,它的导热系数相对较低。来源:小明来电

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈