1.引言
4. 振动隔离
隔离系统的性能由系统的传递率决定——进入系统的能量与离开系统的能量之比。这可以用加速度、力或振动幅度来表示。传递率(T)等于
其中:T = 传递率
Aout = 系统输出的能量(传递力)
Ain = 系统输入的能量(干扰力)
ζ = 阻尼比
fd = 驱动频率
fn = 自然频率
图2显示了两条典型的传递率曲线,一条是高阻尼材料(ζ≈0.5),另一条是低阻尼材料(ζ≈0.05)。
在很低的频率下(fd/fn << 1),输入振动几乎等于输出(传递率等于1),输入位移基本上等于输出位移。
如果驱动频率等于自然频率(fd/fn = 1),系统处于共振状态。如果在传递率方程中忽略阻尼,在共振状态下运行的系统的传递率将接近无穷大。随着阻尼的增加,共振时的传递率降低。图3显示了共振时峰值自然频率与损耗因子之间的关系。当然,所有现实世界的系统都有一定程度的固有阻尼,但这说明了阻尼在振动隔离中可以发挥的重要作用。当在共振或接近共振时使用阻尼很小的振动隔离支架时,能量放大可能会造成许多问题,从简单的噪声水平增加到机械设备的灾难性损坏。
当频率比等于√2时(fd/fn = √2),传递率将再次降至1。这被称为交叉频率,该频率以下的区域被称为放大区。该频率以上是隔离区,其中传递率小于1。设计者将一个系统的主要工作频率置于隔离区的支架系统作为目标。许多系统必须在多个主要频率下运行,或者必须经常经历启动或减速作为操作周期的一部分。对于这些系统,当它必须在共振或接近共振的频率下工作时,支架中的阻尼变得越来越重要。
随着频率继续增加超过交叉频率,隔离水平或隔离效率也随之增加。图4显示了这种关系。当转移的能量必须低于指定水平时,设计师必须知道支架系统的隔离效率,例如在CD-ROM或硬盘驱动器等设备中。
5. 使用弹性材料的支座设计
有许多材料选择可用于生产弹性支架。热塑性材料(可以熔化和成型的材料),如许多乙烯基和橡胶弹性体,可以注射成型成本效益高且细节丰富的零件。热固性材料(在模具中反应且不能重新熔化的材料)提供了另一种选择,必须通过其他方法成型,通常是压缩或转移成型。由于周期时间较长,热固性零件的价格通常高于热塑性材料,但这些材料也可以提供热塑性材料无法满足的化学和强度性能。不同材料的阻尼和刚度也可能有很大差异。
以下部分概述了设计隔离系统时需要考虑的几个关键点。
6. 设计指南
以下是协助设计轴向加载隔振支架和隔振衬垫的指南。
优化负载。适当的性能取决于适当的加载。参考自然频率方程,fn = 3.13√(K/W),如果负载质量相对于所选支架的刚度非常小,系统的自然频率将会很高,降低隔离性能。过载的支架可能会完全压溃或失效,增加支架的有效刚度,也会增加自然频率。过载弹性支架还可能降低支架的使用寿命。通常,支架5%的静态压缩对大多数材料是适当的,尽管高达15%的静态压缩可能仍能提供足够的隔离和零件寿命。对于硬度约为50-60邵氏A的均质弹性体,理想的加载通常约为每平方英寸50磅(psi),尽管10-100 psi的加载可能仍然有效。较软的弹性体应该比较硬的弹性体承受更少的负载。
形状因子(S)为0.5到1.0。固体弹性体表现为不可压缩固体,因此必须有空间膨胀以便变形。因此,应优化形状因子或膨胀因子以达到预期的刚度。形状因子(S)定义为:
S = 承载面积 / 可自由膨胀的面积
示例:
考虑图5中形状的支架。表面A,承载表面,面积为2平方英寸。表面B,支架所有侧面都可自由膨胀,总面积为3平方英寸。形状因子为S = 2/3 = 0.66。高形状因子产生刚性高的支架。形状因子低,支架可能会屈曲而不稳定。对于大多数材料,0.5到1.0的形状因子是合适的。改变支架的厚度或改变支架的横截面可以改变形状因子。环、条带或其他形状可用于创建适当的形状因子。
确定弹性体的动态模量(E)。
材料的动态模量可以使用简化频率图确定。高阻尼材料的动态模量将受温度和频率的影响。简化频率图可以提供一系列温度和频率下的动态模量和损耗因子信息。将动态模量单位从达因/厘米²转换为其他单位可能很有用。转换为psi,乘以1.45 x 10⁻⁵。转换为N/m²,乘以0.10)。
使用以下方程计算形状因子的影响。
圆盘形状:E修正 = E(1+2S²)
块状形状:E修正 = 4/3 E(1+S²)
计算刚度(K)。
使用以下公式计算刚度:
圆盘:K = E修正 πa² / t
环 :K = E修正 π(a₀² - aᵢ²) / t
块 :K = E修正 lw / t
其中:
a = 圆盘半径
a₀ = 外环半径
aᵢ = 内环半径
l = 块长度
w = 块宽度
t = 厚度
组合形状以确定复杂零件的刚度。许多零件可以被视为两个块的组合、一个块和一个圆盘的组合,或任何其他几何形状的组合。按照4a中的概述确定每个部分的刚度。然后确定这些部分是串联还是并联。图6显示了一些示例。示例A显示了一个与圆盘串联的块(它们堆叠在一起)。示例B显示了两个并联的圆盘(它们彼此相邻)。这两个圆盘也与块串联。要确定总体刚度,使用以下方程组合各个形状的刚度。
串联形状:1/K总 = 1/K₁ + 1/K₂ + 1/K₃ + ... + 1/Kn
并联形状:K总 = K₁ + K₂ + K₃ + ... + Kn
假设图6中的块刚度为20 lb/in,圆盘刚度为10 lb/in。示例A的总刚度将为:
1/KA = 1/K块 + 1/K圆盘 = 1/20 + 1/10 = 3/20
KA = 20/3 = 6.66 lb/in
示例B的总刚度将为:
并联圆盘的刚度,K圆盘 = K圆盘1 + K圆盘2 = 10 + 10 = 20 lb/in。
块和圆盘串联的刚度,
1/KB = 1/K块 + 1/K圆盘 = 1/20 + 1/20 = 1/10
KB = 10 lb/in
计算自然频率。使用以下公式计算自然频率:W是以磅为单位的总重量负载。M是以千克为单位的总质量负载。
英制单位:fn = 3.13√(K总/W总)
公制单位:fn = 0.16√(K总/M总)
请记住,系统中的振动隔离将在√2fn以上发生。大多数系统都有某个需要隔离的特定频率。这可能是电机的旋转速度、风扇的叶片通过频率等。作为经验法则,支架系统的自然频率应该是激励频率的三分之一。