首页/文章/ 详情

【科普】螺栓连接结构的有限元仿真建模发展历程

1月前浏览988

有限元仿真方法在紧固连接结构的设计与校核中应用广泛。螺栓连接结构有限元仿真的工程价值在于它允许工程师通过数值模拟来评估连接性能,减少实际测试成本,提高设计可靠性,优化螺栓尺寸、材料和结构,降低 制造成本,确保连接的安全性和持久性,推动工程项目的效率和质量,并且显著减少了因连接结构性能不足导致的重大工程事故。  

有限元仿真对网格的要求较高,良好的有限元网格应符合并具有以下特征:  

1)单元形状简单且单元特性方程容易求解;  

2)网格模型要尽可能精确地与原定义域相同;  

3)在保证精度前提下,尽可能减少单元数以保证求解效率。  

然而,由于螺栓的复杂轮廓,其在有限元建模方面的难度远高于一般机械结构,因此在仿真分析中,不得不对螺栓进行简化处理。随着建模与仿真技术的发展,螺纹类部件有限元分析模型近几十年来经历过多次演变:  

1) 梁单元螺栓模型:利用梁单元模拟螺栓,模型简单、接触定义简单、收敛容易,在很多情况下比较适用。梁单元模拟螺栓不能模拟螺纹紧固连接的拧紧过程和外载荷作用下的旋转松动行为

2) 无螺纹牙圆柱体模型:将螺栓和螺母建模成“工”字形实体,结构简单,建模和网格划分简便快捷。无螺纹牙圆柱体模型同样无法模拟拧紧过程和松动行为  

3) 轴对称网格模型(二维模型):用于计算螺纹牙底应力集中、螺栓轴向分布等问题,但不能模拟拧紧过程和松动行为,也无法呈现螺纹啮合面接触行为

4) 轴对称网格模型(三维模型):三维无升角螺栓螺母模型进行网格划分,容易处理成规则的六面体单元。无升角的三维螺纹部件有限元模型可用于计算螺栓连接结构非旋转松动行为。然而,该模型没有螺旋升角,也没有螺旋线,实际上是多圈平行的牙体,并不是真正的螺纹。

5) 四面体网格模型:螺纹类部件四面体网格模型在有限元软件内可自动化分,但不同区域网格密度难以分别控制,单元数目较多,计算量较大。采用四面体网格划分螺纹部件模型,螺纹牙底处的网格质量和螺纹牙精确轮廓难以保证。最重要的是,四面体网格模型会存在难以收敛的问题,计算精度不高

6) 绑定模型(螺纹牙和基体绑定建模):螺纹牙网格是由二维螺牙网格沿螺旋线扫描而成。螺纹牙和基体单独划分网格,并绑定在一起。然而这种模型的螺纹和基体部分通过绑定处理,交界面处的节点之间不能够很好地传递力和位移

7) 参数化精确建模方法:该方法的核心是通过分析螺纹几何形状,得到螺纹轮廓分段函数,得到具有精确几何形状和高质量六面体网格的螺纹部件有限元模型。该模型与实际螺纹轮廓高度一致,可精确模拟螺纹部件的拧紧过程、螺纹啮合面接触状态演变规律和螺栓松动行为,是目前研究螺纹紧固连接结构失效机理和设计校核最有效的有限元模型。

VDI 2230 Part II中将螺栓连接有限元模型分为四级:一级模型只对部件进行建模,不考虑螺栓本体;二级模型将螺栓考虑为线元,即作为拉伸构件、梁单元或弹簧单元;三级模型将螺栓建模为等效实体模型,即不考虑螺纹的螺栓有限元模型;四级模型为最高等级,表示详细建模的螺栓,需包含螺纹和所有接触面中的接触条件,并且精确表现螺栓的每个细节。Thread Designer软件生成的模型完全符合VDI2230准则的四级模型要求。  

VDI 2230 Part II对四级模型的表述是:四级模型FEM的计算应力符合VDI2230讨论的设计概念所需的公称应力定义,可用于确定公称载荷。并且,可通过相应的局部验证概念确定和评估螺纹每个位置的局部载荷。此外,最小螺纹配合长度也需要通过四级模型在考虑弹塑性材料特性的情况下获得。VDI 2230 Part II中对螺栓精确有限元模型的评价可总结为:一种更加精确地可以可替代VDI 2230的螺栓连接设计与校核的方法。  

螺栓精确有限元模型的工程应用优势在于:  

1) 可模拟拧紧过程,研究拧紧方法、拧紧工具、螺栓参数等对拧紧过程带来的影响,高速、高效、低成本获得最佳拧紧策略。  

2) 模拟松动行为,便于研究螺栓的松动机理与防松措施。  

3) 计算螺纹应力集中情况,快速判断静强度、疲劳强度等是否达标,降低工程风险。  

4) 辅助或替代VDI 2230准则进行螺栓连接设计与校核。  

因此,采用轮廓与实际高度一致的螺纹部件有限元模型模拟螺纹连接失效行为是提出针对性防松措施和提高可靠性的有效手段,该方法已经过了学术界15年的检验与认同。但是,螺纹模型的参数化精确建模方法仍属于紧固连接研究领域的前沿技术,螺纹网格无法人工划分,需要借助计算机程序实现。目前国内相关学术研究仍然集中于西南交通大学、西安交通大学、北京理工大学、大连理工大学等个别高等院校和研究机构,各机构算法严格保密,处于技术垄断阶段,并形成了多个“技术孤岛”。这也导致了学术研究成果迟迟无法落地,本应广泛应用于工程领域的实用先进技术多年来仅存在于顶级期刊论文中。  



来源:昊宇睿联
VDI2230疲劳材料科普控制螺栓
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-09-25
最近编辑:1月前
获赞 14粉丝 21文章 30课程 1
点赞
收藏
作者推荐

【科普】紧固连接结构的疲劳寿命仿真方法(基于FE-Safe)

紧固连接疲劳寿命仿真是与结构中薄弱部件的疲劳寿命紧密相关的技术。通常,为了进行这类仿真,工程师需要依赖商用的疲劳耐久分析软件。这些软件允许工程师在有限元分析的框架下获得整个结构的疲劳寿命,而不仅仅是螺栓连接。通过考虑载荷、材料特性、几何形状以及不同部件的疲劳特性,工程师可以识别潜在的疲劳问题,评估结构寿命,从而采取适当的措施来提高连接结构的可靠性。这种仿真技术在确保结构性能、安全性和寿命方面发挥着关键作用,尤其是在需要长时间运行的领域,如航空、航天和汽车工程。对于螺栓连接结构来说,应力集中点与疲劳断裂源往往为第一圈螺纹牙的牙底。因此如果想对螺栓连接结构进行更加精确的仿真分析,必须对螺纹进行精确建模,而不是像工程中常用的方法一样将螺栓简化为圆柱体。本文将展示一个基于FE-Safe软件的带嵌件的复合材料螺栓连接结构疲劳寿命预测仿真案例。本文使用的螺栓精确有限元模型使用ThreadDesigner软件生成。FE-Safe是一款疲劳耐久分析处理软件,内置多种疲劳理论算法,功能全面先进,其疲劳寿命估算功能受到国内外学者的一致认可。FE-Safe能够考虑多种因素的影响,包括受载平均应力、应力集中、试样表面状态等,同时自带材料库和载荷谱设计功能,能够满足大部分应力应变条件下疲劳寿命预测。FE-Safe可以直接导入有限元计算结果文件进行分析,数据互通性好。关于FE-Safe软件的具体分析操作可以查阅FE-Safe的帮助手册,在此不做详细展开描述,但是在实际操作中发现有几个问题需要特别关注。一是载荷谱的设置问题,符合实际工况的载荷谱设置能够更加准确地对疲劳寿命进行预测,本节的载荷谱的设置是通过提取ODB结果文件中一个循环周期中所有数据点,并将其导入FE-Safe中;二是疲劳试验频率需要通过调整“Properties”中“Rate”的数值来确定;三是失效准则的选取,本次疲劳寿命预测是基于SWT多轴失效准则开展的。本案例的有限元模型见下图。有限元计算过程根据实际服役行为进行设置,设置的方法、注意事项与本合集中上一篇科普文章的静力学仿真过程一致,此处不再赘述。将有限元计算文件导入FE-Safe并基于SWT寿命准则进行螺栓疲劳寿命的预测。下图示出了部分嵌件参数下的螺纹根部寿命云图,其中,螺栓寿命最小的部位均在螺栓第一圈啮合螺纹处,与试验中螺栓疲劳断裂的位置一致。从预测结果可以看出,不同尺寸嵌件下螺栓的疲劳寿命存在显著不同。其中d表示预压缩量,k表示嵌件壁厚。除预测寿命云图外,FE-Safe中还可以直接导出寿命结果供使用者分析。下图示出了不同嵌件参数下螺栓预测疲劳寿命。需要指出的是,由于有限元分析软件中没有考虑到表面损伤等问题,因此螺栓疲劳寿命的预测结果与试验结果可能存在误差,但是其预测寿命中的规律性内容依旧能为实际连接结构的寿命预测提供一定参考价值。为了验证疲劳耐久分析处理软件FE-Safe的计算结果准确性,下图示出了在不同嵌件参数下,螺栓的试验寿命与FE-SAFE中计算的疲劳寿命的对比。下图(a)示出,当预压缩量为0.05mm时,螺栓的预测寿命均低于试验寿命;下图(b)、(c)示出,当预压缩量为0.10mm和0.15mm时,螺栓的预测寿命和实验寿命均大于20万次,且预测效果较好;下图(d)示出,当预压缩量为0.20mm时,此时螺栓预测寿命固定在4.28万次,这是由于在有限元计算中,嵌件表面未能与钛合金接触,此时嵌件未能改变螺栓连接结构的受力情况,最终出现了预测寿命不变的现象。尽管实际试验和理论计算的疲劳寿命有一定的分散性,但是误差均在两倍之内,说明使用FE-Safe软件估算的螺栓疲劳寿命的合理性。需要特别注意的是,FE-Safe软件中螺纹表面的粗糙度与螺栓疲劳预测寿命高度相关。下表示出了当不加嵌件时,不同粗糙度下的螺栓预测疲劳寿命。结果显示,随着螺纹表面粗糙度的增大,螺栓的预测疲劳寿命不断降低,当Ra=4.0μm时,预测疲劳寿命仅为1.16万次。在实际工程应用中需要确定服役螺栓的表面粗糙度,以提高疲劳寿命预测的精确性。本文案例展示了基于FE-Safe的紧固连接疲劳寿命仿真方法,读者也可采用其他疲劳耐久分析处理软件实现类似的分析效果。通过这种分析技术,工程师可以识别潜在的疲劳问题,评估结构寿命,从而采取适当的措施来提高连接结构的可靠性。但需要注意的是,紧固连接结构的疲劳寿命仿真,必须采用螺栓精确有限元模型。采用简化模型无法仿真螺栓的应力集中情况,会导致寿命分析结果无意义。来源:昊宇睿联

未登录
1条评论
叫我小张
不积跬步无以至千里,不积小流无
23天前
最后一句话最发人深省
回复
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈