相信大家听说过德国汽车紧固连接装配环节中,工人拧紧螺栓严格按照作业指导书的要求执行“拧三圈回半圈”的故事。有的人据此夸奖德国人对于工匠精神的严谨与执着,有的人针对这个拧紧方法提出了一些看似合理实则离谱的解释(包括但不限于“消除预紧力”、“消除摩擦力”等),而有的人则提出所谓的“拧三圈回半圈”的说法并没有任何理论依据与基础。
不可否认,德国在螺栓连接的工程应用研究上是走在世界前列的。欧洲空间标准化合作组织ECSS、美国国家航空航天局NASA等组织以及中、美、日等各国学者针对螺栓连接系统正向设计的研究,其底层研究思想基本都来源于德国工程师协会所撰写的《VDI 2230 高强度螺栓连接系统计算》。
“螺栓拧三圈回半圈”,就像童话故事一样,满足了人们对德国人严谨、认真态度的想象。但我们也不要妄自菲薄,不必过度神化德国人,而是要以科学研究的角度去探索这一“故事”背后的意义。
以下内容涉及到螺纹力学相关知识,详细推导过程可见过往科普文章。
我们知道,当采用转角法、扭矩法等方式拧紧螺栓时,螺栓拧紧扭矩T拧紧与螺栓预紧力F0之间的关系:
其中,d2为螺纹螺纹面等效摩擦直径,一般取螺纹中径;dw为支承面等效摩擦直径;μs为螺纹面摩擦系数;μw为支承面摩擦系数;P为螺距;α为螺纹牙型半角30°。
公式的物理意义为:螺栓拧紧过程中,施加的拧紧扭矩T拧紧需要克服螺纹面拧紧方向的摩擦扭矩T拧紧-螺纹面和螺栓头(或螺母)支承面的摩擦扭矩T拧紧-支承面。
啮合螺纹面处的扭转切应力为:
其中,AS为螺纹段应力截面积,WP为螺栓的抗扭截面系数。
当采用转角法、扭矩法等方式拧紧螺栓时,螺栓预紧力F0在螺栓横截面中产生拉伸应力σ;由于螺纹面拧紧扭矩T拧紧-螺纹面的存在,还会产生额外的扭转应力τ。在螺栓横截面拉伸应力σ和扭转应力τ共同作用下,螺栓处于双轴应力状态。根据材料力学第四强度理论,螺纹牙底的等效单轴应力可表示为:
根据“拧三圈回半圈”的思路,将螺栓拧紧至装配预紧力F0或略微过拧紧后,再在螺栓头或螺母上施加拧松方向的扭矩T回转,将螺栓杆内部在拧紧过程中产生的扭矩T拧紧-螺纹面尽可能降至最低,从而使得螺栓横截面的扭转应力τ最小,从而使得螺纹牙底的等效应力σ等效大幅度降低。
最理想情况是扭转应力τ降至零,从而螺纹牙底的等效应力σ=σ等效。
因此,在拧松方向的旋转角度:
其中,l为夹持长度;
IP为螺栓截面极惯性矩;G为切变模量。
因此,在工程实际中,“拧三圈回半圈”是有一定道理的,但在拧松方向的旋转角度值θ回转具有结构或系统依赖性,采用该策略消除截面切应力从而大幅度降低螺栓截面等效应力的方法是可行的,但需准确计算拧松的旋转角度θ回转却并非易事,尤其是紧固件或被连接件处于弹塑性状态时,旋转角度的值需通过螺纹连接结构精确有限元计算确定。
回转角度θ回转的不合理取值,可能会使得螺纹牙底等效应力的降低效果不理想,甚至预紧力F0降低,同时在拧松方向积累了扭矩T松动-螺纹面,产生了拧松方向的切应力。
回转角度θ回转的高精度取值方法,极其依赖螺栓的精确有限元建模理论。而在这一理论上,目前走在学术前沿的是中、日两国学者,在公开的文献中,德国学者并不具备螺栓精确有限元建模的能力。因此,德国虽然对螺栓的工程应用研究相当超前,能提出通过“过拧紧+回退”的方法来降低螺纹等效应力,但他们却没有掌握深入研究这一方法的核心理论。
当然,这是因为中、日两国学者和德国学者走的研究路线不同导致德国学者在精确有限元建模理论上的缺失,无关学术能力。
除消除扭转应力外,“拧三圈回半圈”还会导致螺纹间的应力二次分配,也会使得螺纹处的应力集中系数略微下降,此推文中不做详细探讨。
精确有限元分析验证
由基于精确有限元模型的数值分析可知,采用转角法拧紧后,第一圈啮合螺纹牙底的等效应力为575 MPa;螺栓头回退一定角度,消除扭转切应力后,第一圈啮合螺纹牙底的等效应力降至389 MPa,同时螺栓预紧力基本保持不变。
(左) 消除扭转切应力前的Mises应力
(右)消除扭转切应力后的Mises应力
“拧三圈回半圈”的分析结论探讨
附录
螺栓横截面的切应力分布:
(左) 弹性变形状态 (右) 全塑性变形状态
弹性变形状态下螺栓的抗扭截面系数:
全塑性变形状态下螺栓的抗扭截面系数:
参考文献