点击上方蓝字了解更多计算与STEM领域研究前沿
前几天看到新闻的报导,上海等地出现了台风。今天笔者就以台风为例,讲讲台风的形成原因、影响因素以及和台风相关的高科技手段。
台风是什么?
台风是指一种强烈的热带气旋(气旋是一种大气中形成的旋转气流系统,其中心气压较低,周围气压较高。),是一种在热带和亚热带地区形成的强风暴系统。它们在不同地区有不同的名称,比如在西北太平洋称为台风,在大西洋和北太平洋称为飓风,在南半球和印度洋则称为气旋。
台风是怎么形成的?
台风产生的原因主要是由于热带地区海洋表面温度高于26.5°C,导致大量湿润空气上升并形成低压区。随着湿润空气上升,水汽在对流过程中凝结,释放潜热,使得气压进一步降低,空气旋转形成气旋。科氏力使气旋结构逐渐组织成一个旋转的系统,形成台风。高湿度、较低的风切变和适宜的气候条件共同作用,推动台风的形成和发展。
台风的影响因素有哪些?
海洋因素
台风的形成和强度通常依赖于海洋表面温度。较高的SST(通常≥26.5°C)提供了足够的热量和湿度,有助于台风的形成和增强。
强风也可以引起海洋表层的搅拌和混合,影响海洋表面温度。如果混合层较深,可能会将较冷的深层水体带到表层,导致台风强度减弱。
涌浪现象会将深层较冷的海水带到表面,降低海洋表面温度,从而可能影响台风的强度。
大气因素
台风的发展需要高湿度的空气。足够的水汽在对流过程中凝结,释放潜热,促进台风的增强。
台风形成和发展通常需要较低的风切变(风速和风向随高度的变化)。强风切变会破坏对流结构,抑制台风的发展。
低压系统是台风形成的基础。台风的形成通常始于热带低压区,随着气压降低,台风逐渐组织成气旋系统。
科氏力(地球自转产生的惯性力)使得低压区的空气旋转,形成气旋结构。气旋的组织程度直接影响台风的强度和结构。
气候和环境的因素
厄尔尼诺现象是指赤道中东太平洋海洋表面温度异常升高的现象。
拉尼娜现象是指赤道中东太平洋海洋表面温度异常降低的现象,与厄尔尼诺现象相反。
厄尔尼诺现象对台风的形成和强度有显著影响。例如,厄尔尼诺现象通常导致西太平洋海洋表面温度升高,增加台风的频率和强度,而拉尼娜现象则可能导致台风频率的减少。
北大西洋振荡(NAO)——指北大西洋地区大气压力的波动模式。
北极振荡(AO)——指北极地区大气压力模式的波动。
这些大气振荡模式会影响台风的生成和路径。例如,NAO和AO的变化可以改变气流模式,从而影响台风的路径和强度。
地形因素
当台风接近陆地时,地形(如山脉)会对台风的强度和路径产生重要影响。山脉可以阻碍台风的移动,导致台风强度减弱,并改变台风的路径。
海岸线的形状和地形变化也会影响台风的路径和强度。例如,弯曲的海岸线可能会导致台风路径的改变。
其他因素
台风的内部结构,如台风眼的形成和眼墙的强度,也会影响其整体强度和降水分布。
其他大规模天气系统(如高压系统和低压系统)也会影响台风的路径和强度。例如,高压系统可能会引导台风的移动方向。
台风可以预防吗?
台风本质上是一种自然现象,因此无法完全预防。
但是,通过科学技术、工程措施和应急准备,可以有效减少台风对生命和财产的影响。
台风涉及到哪些现代科技手段?
总的来说,台风和CFD的关系最紧密。CFD关于台风的研究主要是:
大气动力学模拟
云和降水过程
海气相互作用
边界层过程
台风风场的局部影响
台风路径预测
涉及到的现代科技手段有:
气象卫星
静止卫星(如美国的GOES系列、欧洲的Meteosat系列、中国的风云系列)能够长时间固定在地球上空,监测特定区域的天气状况。它们能够连续观测台风的生成、移动和强度变化,提供高清的云图、海面温度、湿度等数据。
极轨卫星(如NOAA系列、MetOp系列)绕地球南北两极运行,提供全球覆盖的气象观测数据,包括大气温度、湿度剖面、云层等信息,有助于提供精确的全球天气预报。
气象雷达
多普勒雷达能够实时监测降水、风速和风向变化,尤其是近海和陆地上台风的结构和强度。通过反射率图和速度图,气象部门可以追踪台风的眼墙、降雨带以及气流速度,了解台风的内部结构。
多个雷达站组成的网格化观测系统可以提供高分辨率的台风风场数据,帮助气象学家掌握台风在陆地上的路径变化及其对局地风暴的影响。
数值天气预报(NWP)
数值天气预报模型(Numerical Weather Prediction, NWP)是通过使用数学方程描述大气的物理过程,并利用高性能计算机来模拟大气状态随时间变化的预测方法。数值天气预报模型依赖于对大气状态的精确观测数据和复杂的物理、动力学方程,预测未来的天气变化。
数值天气预报的基本原理是大气动力学和热力学的基本方程组,这些方程基于流体力学和热力学定律,主要包括:
纳维-斯托克斯方程:描述大气中空气运动的基本动力学方程,反映了动量守恒。
连续性方程:描述空气密度变化及其对流动的影响,反映质量守恒。
热力学方程:描述大气中的温度变化和热交换过程。
水分方程:描述大气中的水蒸气、云水和降水等相变过程。
状态方程:空气的状态由温度、气压和密度决定。
全球数值预报模型:全球数值天气预报模型通过计算大气的动力学和物理过程,预测未来的大气状态。常见的有:
GFS(全球预报系统):由美国国家气象局运行,提供全球天气预测。
ECMWF(欧洲中期天气预报中心模型):提供全球高精度的中期天气预报,广泛用于台风路径和强度预测。
JMA(日本气象厅):也提供全球和区域天气预报,特别是在亚太地区应用广泛。
区域数值预报模型:区域模型提供了更高分辨率的预报结果,适合针对特定区域进行精准预报,如中国的GRAPES、美国的WRF(天气研究与预报模型)。
数据同化技术
数据同化是一种将观测数据(如气象卫星、雷达、气象站、探空气球等的观测数据)与数值天气预报模型结合的技术。其核心目标是通过将实际观测值与模型预测的背景场(通常是前一时刻的预报结果)融合,生成更准确的大气状态初值。可以看作是将来自实际世界的观测信息与模型预报的理论知识相结合,形成对大气系统最优的初始状态估计。
其中,四维变分同化(4D-Var)是数据同化的一个高级方法,它将时间维度也纳入同化过程,使得在空间和时间上的观测数据与数值模型更紧密结合,优化整个时间段内的状态估计。4D-Var通过求解一个涉及时空维度的最优化问题,生成在一段时间内的最优大气状态。
高性能计算
台风等极端天气的数值预报依赖于超级计算机的大规模计算能力。由于数值预报模型非常复杂,涉及到多维方程的解算和大量数据的处理,因此超级计算机对于快速生成高分辨率天气预报至关重要。越来越多的气象数据处理和预报生成也通过云计算平台 完成,特别是实时数据处理和并行计算方面,云计算可以提供高效的计算资源。
集 合预报
集 合预报通过运行多个天气预报模型,或者对同一模型的初始条件进行不同的小幅扰动,产生一系列可能的天气情景。这种方法特别适合台风等不确定性高的天气现象,通过分析多个路径和强度的结果,提供一个概率分布来表示台风的潜在路径和强度变化。
当然,未来也许无人机等新型的无人探测设备也会在台风的预报和检测中发挥作用。
如果你觉得此文对你有帮助,请点赞,谢谢!
计算机技术在科学&技术&工程&数学中得到了广泛的应用,力学方面,计算机技术成为了科学的第四次革命性技术,现在基于计算机的数据科学已经逐步成为力学等其他科学发现的第四范式。人工智能、大数据、数字孪生等概念已经逐步成为当今时代的主题。智能制造、智能算法、数据驱动力学、大语言模型、自动驾驶在当今社会展现出巨大潜力,吸引了大量的研究人员。同时高性能显卡和多核中央处理器的出现为大规模数值模型的高性能计算提供了强大算力。公 众号为力学相关行业的爱好者、教育人士和从业者提供一个平台,希望能通过自己对前沿研究、技术培训和知识、经验的整理、分享带给相关读者一些启发和帮助。
STEM与计算机方法
扫一扫二维码关注本公众 号