《Hydrogen tank filling simulation using a zero - dimensional model: Validation and effect of some key parameters》
这篇论文主要探讨了使用零维模型模拟氢气罐填充过程,并验证了该模型的有效性,同时研究了一些关键参数的影响,具体内容如下:
为减少温室气体排放和应对不可再生能源有限的问题,氢作为替代燃料具有潜力,但其广泛应用面临诸多挑战,尤其在运输部门的氢存储方面。
目前汽车制造商普遍采用压缩氢车载存储,提高加油速度至关重要,同时要确保安全温度和满意的油箱填充水平,SAE J2601 标准为此提供了指导。
CFD 模型能准确模拟加氢过程,但计算成本高,简化模型虽能提供系统级行为洞察,但在某些方面存在局限性,0D 模型具有简单、快速、适合参数化和敏感性分析等优点。
图1 零维模型的设置
目标是分析不同入口温度下罐内温度的演变,并施加随时间变化的入口压力。
考虑了 III 型和 IV 型氢罐,分别以 29 - L IV 型罐和 40 - L III 型罐为例,采用 0D 建模方法,将整个氢罐和填充过程简化为具有均匀属性的单一实体。
应用质量和能量平衡方程,使用真实气体定律,并考虑了焦耳 - 汤姆逊效应、内能和焓的变化、质量流量评估以及固体壁的热存储等因素。
模型中定义了四个体积及它们之间的热传递,包括初始温度为 15°C 的氢气罐气室和初始温度为 18°C 的三个固体域(衬里、碳纤维和金属法兰),初始罐压设为 20 bar,外部环境温度设为 18°C。
热传递包括对流和传导,对流热传递根据对流传递定律计算,传导热传递根据双壳传导方程计算。
通过与实验数据和 CFD 结果进行比较来验证 0D 模型,使用 ANSYS CFX 软件进行 CFD 模拟。
实验在 JRC Institute for Energy and Transport 的 GasTeF 进行,监测了多种参数以评估罐性能。
比较了平均气体温度曲线,AVL CruiseM 0D 模型与实验和 CFD 温度值在整个填充过程中吻合良好,但 tend to overestimate 实验值,最终温度比实验数据高 5°C,而 H2FillS 软件在预测初始压力峰值方面表现不佳,但最终气体温度非常接近实验值。
认为对最终温度的 over prediction 可视为保守估计,因为提供了安全系数,且所选 CFD 结果对应罐内热分布均匀的情况。
图2 施加的入口氢气温度和压力曲线随时间的变化。
考察了四种不同入口气体温度(15°C、0°C、 - 20°C 和 - 40°C)对罐温度的影响。
与 CFD 结果比较,0D 模型 tend to overestimate CFD 结果,且入口气体温度越高,两个模型计算的最终温度差异越大。
差异可能原因包括 0D 模型的几何近似、对气体和罐之间以及与环境之间的热传递预测不太精确,CFD 模型能预测罐内和不同高度的温度分布差异,而 0D 模型无法准确捕获罐内的复杂几何特征和流动动力学。
还分析了不同入口温度对罐外壁温度的影响,以及热在 IV 型氢罐塑料衬里和碳纤维材料中的扩散情况。
L/D 比是氢罐设计的关键参数,较高的 L/D 比通常会导致罐的表面积与体积比增大,从而增强热传递,降低最终气体温度。
考虑了 28 - L IV 型罐的五种不同 L/D 比(2.9、3.8、4.3、4.9 和 5.5),对不同入口气体温度下的气体温度进行了研究。
发现 L/D 比的增加会导致最终气体温度降低,还可能导致垂直气体温度分层,影响结构、安全和性能。
给出了预测不同 L/D 比下最终气体温度、最终氢质量和最终 SOC 的对数方程。
对 40 - L III 型罐进行建模,施加 20°C、40°C 和 50°C 的恒定氢入口温度,并与实验数据比较。
0D 模型最初会 underestimate 温度,然后随着时间的推移会 overestimate 温度,原因包括填充初期对温度分布动态捕获不准确、罐内热量积累以及对某些热耗散机制考虑不足等,此外,模型中假设的恒定入口温度与实际情况不一致。
比较了两种类型罐在不同入口温度下的最终温度,III 型罐最终温度较低,且无论输送温度如何,最终温度随初始温度的增加呈线性增加,但 IV 型罐的斜率更高。
图4 不同进气温度的平均罐气体温度曲线(0D和CFD结果)。
向替代燃料(尤其是氢)的转变对解决运输部门的关键问题具有潜力,但在氢技术方面仍存在显著的技术障碍,特别是氢存储。
本研究创建的 0D 模型为分析氢储罐的填充过程提供了有价值的见解,但与 CFD 模拟存在差异,0D 模型 tend to overestimate 温度,特别是在较高入口气体温度下,这可能归因于几何近似。
L/D 比对于优化温度控制和确保安全很重要,高 L/D 比有助于更有效的热交换,但也可能带来空间和成本等问题,此外,III 型和 IV 型罐在填充过程中的温度演变存在差异,归因于材料和设计特征。
强调了考虑入口气体温度和罐设计参数对于优化未来运输应用中氢存储系统的重要性,进一步的研究对于克服技术障碍和实现氢技术的全部潜力至关重要。
综上所述,该论文详细阐述了零维模型在氢气罐填充模拟中的应用、验证以及关键参数的影响,为优化氢存储系统提供了重要的参考。