翻开材料力学、结构力学或弹性力学等教科书,常常会发现无约束的“自由结构”,即自平衡结构,如图1所示的(a)自平衡框架、(b)板的剪切和(c)杆件的自由扭转等。此类结构因无约束存在可能的刚体位移,从而导致ANSYS因约束不足而退出分析。有些情况下,可以采用荷载和结构的对称性,施加一定的对称约束或部分模型解决约束不足的问题;但是,更多实际情况可能无法施加对称约束,此时应力释放就可大显身手,从而“放飞”(分析求解)自由结构。
应力释放命令IRLF可参考ANSYS的HELP或《ANSYS工程结构数值分析》。在求解全自由结构或自平衡结构的内力和变形时,可施加节点的“虚约束”,该节点约束仅仅为防止刚体位移或刚体转动所必须的约束(如对2D结构,须施加3个自由度约束;对3D结构须施加6个自由度约束)。
需要注意的是惯性释放仅用于静态分析,且非线性、子结构、点单元及轴对称单元等不支持惯性释放,梁单元和层壳单元的质心偏置和变截面梁单元也不支持惯性释放。要利用惯性释放,必须输入材料的质量密度。下面以几个典型例子说明惯性释放的用法。
例1:如图2所示的结构特性不对称的框架,详细参数见命令流。
FINISH$/CLEAR$/PREP7 K,1$K,2,5$K,3,5,5$K,4,0,5 L,1,2$L,2,3$L,3,4 ET,1,BEAM189$MP,EX,1,2.1E11 MP,PRXY,1,0.3$MP,DENS,1,7800 SECTYPE,1,BEAM,RECT SECDATA,0.2,0.2 SECTYPE,2,BEAM,RECT SECDATA,0.2,0.3 SECTYPE,3,BEAM,RECT SECDATA,0.2,0.4 LSEL,S,,,1$LATT,1,,1,,,4,1 LSEL,S,,,2$LATT,1,,1,,,4,2 LSEL,S,,,3$LATT,1,,1,,,1,3$LSEL,ALL LESIZE,ALL,,,10$LMESH,ALL !打开惯性释放,对48点施加全约束 !可任意约束一个节点 /SOLU$IRLF,1$D,48,ALL !施加一对集中力 F,NODE(0,0,0),FY,1000 F,NODE(0,5,0),FY,-1000 SOLVE$FINISH$/POST1 PLNSOL,U,Y !定义单元表,绘制弯矩图 ETABLE,MI,SMISC,2 ETABLE,MJ,SMISC,15 PLLS,MI,MJ,-1 !约束反力列表,反力等于零或几乎为零 PRRSOL
本例中的约束节点可以任选,也可以是施加荷载的节点。通过弯矩图和约束反力结果可以验证计算结果的正确性,也可通过改变立柱刚度验证变形的正确性。如果全部为等截面,则可通过对称结构的分析检验惯性释放的正确性。
例2:如图3所示的受剪平板的计算分析。采用SHELL181单元模拟,剪切荷载45MPa考虑板厚和边长分后,平均分布在边上的各个节点上;约束节点任取模型中的一个节点。按弹性力学假定计算的这种受剪板的正应力为零,剪应力数值等于剪切荷载。但因有限元和力学假定有一定差别,所以在去除角部一定影响后,ANSYS解与理论解一致。命令流如下:
FINISH$/CLEAR$/PREP7$A=3$B=2 TH=0.03$T0=45E6$BLC4,,,A,B ET,1,SHELL181$MP,EX,1,2.1E11 MP,PRXY,1,0.1$MP,DENS,1,7800 R,1,TH$ESIZE,0.05$MSHKEY,1 AMESH,ALL NSEL,S,LOC,X,0 *GET,N1,NODE,,COUNT F,ALL,FY,T0*B*TH/N1 NSEL,S,LOC,X,A *GET,N2,NODE,,COUNT F,ALL,FY,-T0*B*TH/N2 NSEL,S,LOC,Y,0 *GET,N3,NODE,,COUNT F,ALL,FX,T0*A*TH/N3 NSEL,S,LOC,Y,B *GET,N4,NODE,,COUNT F,ALL,FX,-T0*A*TH/N4$NSEL,ALL !约束某个角节点并求解 /SOL$IRLF,1$D,1,ALL$SOLVE /POST1$PLNSOL,U,SUM PLNSOL,S,X !去掉角部范围影响的剪应力 NSEL,S,LOC,X,0.5,2.5 NSEL,R,LOC,Y,0.5,1.5 ESLN,S,1$PLNSOL,S,XY
从图中可以看出,整个模型的角部范围还是有较大的正应力,去掉其影响后,板中剪应力与理论解几乎一样,虽然正应力还存在,但与剪应力比较,已经很小了。
例3:如图4所示自由扭转杆件,计算杆件的剪应力。众所周知,自由扭转存在翘曲位移,但翘曲位移不受约束,否则就是约束扭转问题了,采用惯性释放只需约束任一节点,可满足该条件。另外的关键是如何施加荷载,如果采用刚性面的方法有可能限制截面的翘曲变形,因此本例采用截面中线剪力流相同的概念施加两端节点荷载,如图4中所示。同例3一样,在绘制剪应力图时,去掉一个梁高端部影响,可以验证ANSYS模拟解与理论解决的误差在3%以内。
!建模几何模型并生成有限元模型 FINISH$/CLEAR$/PREP7$L=10 A=1.8$B=1.2$T1=0.024$T2=0.016 TT=2E6$C0=2*(A-T2)*(B-T1) F10=TT/C0*(A-T2)$F20=TT/C0*(B-T1) BLC4,,,L,B$AGEN,2,ALL,,,,,A WPROTA,,90$BLC4,,,L,A AGEN,2,3,,,,B$NUMMRG,ALL ET,1,SHELL181$MP,EX,1,2E11 MP,PRXY,1,0.3$MP,DENS,1,7820 R,1,T1$R,2,T2 ASEL,S,LOC,Z,0$ASEL,A,LOC,Z,A AATT,1,2,1 ASEL,S,LOC,Y,0$ASEL,A,LOC,Y,B AATT,1,1,1 ASEL,ALL$MSHKEY,1$ESIZE,0.25 AMESH,ALL! !施加截面各边节点荷载 !略复杂些,8条边分别施加 NSEL,S,LOC,X,0$NSEL,R,LOC,Z,0 *GET,N1,NODE,,COUNT!! F,ALL,FY,F20/N1 NSEL,S,LOC,X,0$NSEL,R,LOC,Z,A *GET,N2,NODE,,COUNT!! F,ALL,FY,-F20/N2 NSEL,S,LOC,X,0$NSEL,R,LOC,Y,0 *GET,N3,NODE,,COUNT!! F,ALL,FZ,-F10/N3 NSEL,S,LOC,X,0$NSEL,R,LOC,Y,B *GET,N4,NODE,,COUNT!! F,ALL,FZ,F10/N4 NSEL,S,LOC,X,L$NSEL,R,LOC,Z,0 *GET,N1,NODE,,COUNT! F,ALL,FY,-F20/N1 NSEL,S,LOC,X,L$NSEL,R,LOC,Z,A *GET,N2,NODE,,COUNT! F,ALL,FY,F20/N2 NSEL,S,LOC,X,L$NSEL,R,LOC,Y,0 *GET,N3,NODE,,COUNT! F,ALL,FZ,F10/N3 NSEL,S,LOC,X,L$NSEL,R,LOC,Y,B *GET,N4,NODE,,COUNT!!! F,ALL,FZ,-F10/N4$ALLSEL,ALL !惯性释放打开,施加一个节点的约束 /SOLU$IRLF,1$D,1,ALL$SOLVE /POST1$PLNSOL,U,SUM! !取一个梁高范围外的单元 NSEL,S,LOC,X,A,L-A ESLN,S,1 PLNSOL,S,XY PLNSOL,S,XZ !理论剪应力 ST1=TT/C0/T1$ST2=TT/C0/T2$*STAT
上述三例给出了惯性释放在静力分析中的应用和命令流,并与相关理论结果进行了验证。对于绝大多数实际工程结构而言,都有明确的约束,不必使用惯性释放。而对某些理论解的验证时,其力学模型往往缺少约束条件,而ANSYS静力分析又不能缺席约束条件,在模型不太容易利用对称性施加约束时,采用惯性释放往往成为计算分析的首选策略。