在湍流的计算建模中,一个共同的目标是获得一个能够预测感兴趣量(如流体速度)的模型,以便在模拟系统工程设计中使用。对于湍流流动,涉及湍流现象的长度尺度范围和复杂性使得大多数建模方法成本过高;解决湍流中涉及的所有尺度所需的分辨率超出了计算能力。在这种情况下,主要的方法是创建数值模型来近似未解决的现象。这里列出了一些常用的湍流流动计算模型。
湍流模型可以根据计算成本进行分类,这与被模拟与被解析的尺度范围相对应(解析的湍流尺度越多,模拟的分辨率越细,因此计算成本越高)。如果大多数或全部湍流尺度都没有被模拟,计算成本非常低,但代价是准确性降低。
除了广泛的长度和时间尺度以及相关的计算成本外,流体动力学的控制方程包含一个非线性对流项和一个非线性及非局部的压力梯度项。这些非线性方程必须在适当的边界和初始条件下用数值方法求解。
1. 雷诺平均纳维-斯托克斯方程
Reynolds-averaged Navier–Stokes 雷诺平均纳维-斯托克斯(RANS)方程是湍流建模最古老的方法。解决的是控制方程的集 合版本,引入了新的表观应力,称为雷诺应力。这增加了一个二阶张量的未知数,各种模型可以提供不同程度的封闭。一个常见的误解是,RANS方程不适用于具有时间变化平均流的流动,因为这些方程是“时间平均”的。实际上,统计上非稳态(或非定常)流动也可以同样处理。有时这被称为URANS。雷诺平均没有固有的东西可以阻止这一点,但用于封闭方程的湍流模型只有在这些平均变化的时间与包含大部分能量的湍流运动的时间尺度相比很大时才有效。
RANS模型可以分为两种广泛的途径:
a)Boussinesq假设
这种方法涉及使用雷诺应力的代数方程,包括确定湍流粘度,并根据模型的复杂程度,求解传输方程以确定湍流动能和耗散。模型包括k-ε(Launder和Spalding),混合长度模型(Prandtl)和零方程模型(Cebeci和Smith)。这种方法中可用的模型通常根据与方法相关联的传输方程数量来引用。例如,混合长度模型是“零方程”模型,因为没有求解传输方程;k-ε是“二方程”模型,因为求解了两个传输方程(一个用于k,一个用于ε)。
b)雷诺应力模型(RSM)
这种方法尝试实际解决雷诺应力的传输方程。这意味着引入了几个传输方程,用于所有雷诺应力,因此这种方法在CPU工作上的成本要高得多。
2. 大涡模拟
Large eddy simulation大涡模拟(LES)是一种技术,在这种技术中,通过过滤操作去除流动的最小尺度,并使用子网格尺度模型来建模它们的效果。这允许解析湍流的最大和最重要的尺度,同时大大减少了最小尺度引起的计算成本。这种方法需要比RANS方法更多的计算资源,但比DNS要便宜得多。
3. 分离涡模拟
Detached eddy simulation分离涡模拟(DES)是RANS模型的修改,在足够细分的区域中,模型切换到子网格尺度表述,以便进行LES计算。靠近固体边界和湍流长度尺度小于网格最大尺寸的区域被分配RANS模式的解决方案。当湍流长度尺度超过网格尺寸时,使用LES模式解决这些区域。因此,DES的网格分辨率不像纯LES那样苛刻,从而大幅降低了计算成本。尽管DES最初是为Spalart-Allmaras模型(Philippe R. Spalart等人,1997年)制定的,但它也可以通过适当修改RANS模型中明确或隐含涉及的长度尺度,与其他RANS模型(Strelets,2001年)一起实现。因此,基于Spalart-Allmaras模型的DES就像带壁面模型的LES,而基于其他模型(如二方程模型)的DES则表现为混合RANS-LES模型。由于RANS-LES切换,网格生成比简单的RANS或LES情况更复杂。DES是一种非区域性方法,为解决方案的RANS和LES区域提供了单一平滑的速度场。
4. 直接数值模拟
Direct numerical simulation直接数值模拟(DNS)解析了湍流长度尺度的全部范围。这边缘化了模型的效果,但极其昂贵。计算成本与Re^3成正比。对于具有复杂几何形状或流动配置的流动,DNS是不可行的。
5. 相干涡旋模拟
Coherent vortex simulation相干涡旋模拟方法将湍流场分解为相干部分,包括有组织的涡旋运动,以及不相干部分,即随机背景流动。这种分解是通过小波滤波完成的。这种方法与LES有很多共同之处,因为它使用分解并只解析过滤部分,但不同之处在于它不使用线性低通滤波器。相反,过滤操作基于小波,并且过滤器可以根据流动场的演变进行调整。Farge和Schneider使用两种流动配置测试了CVS方法,并表明流动的相干部分表现出与总流动的能量谱-40/39相对应的相干结构(涡旋管),而流动的不相干部分组成了均匀背景噪声,没有表现出有组织的结构。Goldstein和Vasilyev将FDV模型应用于大涡模拟,但没有假设小波滤波器从子滤波尺度中消除了所有相干运动。通过同时使用LES和CVS过滤,他们表明SFS耗散由SFS流动场的相干部分主导。
6. PDF方法
Probability density function (PDF) methods,由Lundgren首次引入的概率密度函数(PDF)湍流方法,基于跟踪速度的一点PDF,fV(v;x,t)dv,它给出了在点x的速度在v和v+dv之间的概率。这种方法类似于气体的动力学理论,其中气体的宏观属性由大量粒子描述。PDF方法的独特之处在于它们可以应用于不同湍流模型的框架内;主要差异发生在PDF传输方程的形式上。例如,在大涡模拟的背景下,PDF变为过滤后的PDF。PDF方法也可以用来描述化学反应,并且特别适用于模拟化学反应流动,因为化学源项是封闭的,不需要模型。PDF通常通过使用拉格朗日粒子方法来跟踪;当与大涡模拟结合时,这导致了一个用于子滤波粒子演化的Langevin方程。
7. 涡度约束方法
Vorticity confinement method,涡度约束(VC)方法是一种在模拟湍流尾迹时使用的欧拉技术。它使用类似孤立波的方法来产生一个没有数值扩散的稳定解。VC可以在仅有2个网格单元内捕获小尺度特征。在这些特征内,求解一个非线性差分方程,而不是有限差分方程。VC类似于捕获冲击波的方法,其中满足守恒定律,以便准确计算基本积分量。
8. 线性涡旋模型
Linear eddy model,线性涡旋模型是一种用于模拟湍流中发生的对流混合的技术。具体来说,它提供了一种数学方法来描述标量变量在矢量流场内的相互作用。它主要用于湍流的一维表示,因为它可以应用于广泛的长度尺度和雷诺数范围。这个模型通常用作更复杂流动表示的构建块,因为它提供了在大范围流动条件下保持的高分辨率预测。
邀您关注
▽ 纯粹CFD:软件教程、行业应用、专业理论、
基础科普、研究前沿、严选培训广告
▽ 只聊CFD相关的大小事,信手天成,娓娓道来