超材料是由亚波长单元组成的人工周期性结构,在对应的频率下可显示负的介电常数(ε)和磁导率(μ)的有效介质。开环谐振器(Split Ring Resonators,简称SRR)是一种在电磁学和微波技术中广泛应用的元件,其特点在于其环形结构中存在一个或多个开口,这使得它在特定频率下能够产生强烈的电磁谐振。SRR是最早提出和应用的一批超材料,并表现出了极高的应用价值。这里介绍一种开发SRR设计的等效电路方法。
As shown below👇
SRR的等效电路
SRR可以看作LC谐振器,可以被外部磁通量激发,在基模共振以上表现出很强的抗磁性。
SRR还表现出交叉极化效应(磁电耦合),因此也可以通过适当极化的时变外部电场进行激励。
下图显示了SRR的基本结构,以及等效电路模型。
结构扩展
SRR 主要可以被认为是可以被轴向磁场激发的谐振磁偶极子,而 CSRR本质上表现为可以被轴向电场激发的电偶极子(具有相同的谐振频率)
上图中(a) NB SRR、(b) D SRR、(c) SR 和 (d) DSR
非双各向同性裂环谐振器 (NB SRR) 是对基本 SRR 拓扑结构的轻微修改,它在元件平面上显示 180° 旋转对称性。由于这种对称性,NB SRR 中不可能产生交叉极化效应。
NB SRR 的等效电路模型和谐振频率与 SRR 相同。双缝 SRR (D SSR) 也呈现上述对称性,从而避免了交叉极化。
D-SSR 等效电路与 SRR 的不同之处在于谐振频率是 SRR(相同大小)的两倍。
最后,螺旋谐振器 (SR) 以及双螺旋谐振器 (DSR)允许相对于 SRR 降低谐振频率,这从其提出的等效电路中可以看出。
自2000年左手材料被成功制造以来,SRR作为实现左手材料特性的关键元件之一,迅速成为物理学与电磁学领域的研究热点。
随着无线通信技术的不断发展,对微波器件的小型化、宽带化、多频化等性能要求不断提高,SRR及其相关结构在天线、滤波器、传感器等微波器件中的应用前景越来越广阔。
目前,研究人员正在不断探索SRR的新结构、新材料以及新应用,以进一步提升其性能并拓展其应用领域。