首页/文章/ 详情

磁环的颜色和材质以及波形的识别

1月前浏览874

   
   
微 信公 众号:电磁兼容之家

第2372期


磁环颜色和材质有没关系呢?磁导率高的磁环在使用过程中要注意些什么?


大部分磁环都要涂装,一般锰锌环涂绿色,铁粉芯环用两色来区分材质,常用有-2(红/透明)、-8(黄/红)、-18(绿/红)、-26(黄/白)及-52(绿/蓝),铁硅铝一般全黑等等。


锰锌系列的磁环涂装的颜色和材质没有太大联系,但是金属合金或者铁粉芯的使用不同的颜色 区分材质的。高导磁环使用的时候,要注意选择合适的线径、绕线不能破坏涂层,绕线不能太紧;另外还要选用适当的使用温度和使用频率。


磁心烧结后的颜色与之后喷涂的涂料颜色没有必然关系。只是有些约定俗成的对应关系。比如绿色-高导;双色-铁粉芯;黑色+印字-铁硅铝等等。


磁环的颜色,是习惯性的,客户如没有特别要求,厂是按厂家的标准及要求完成匹配颜色。磁导率高的产品,磁导率越高,所受的温度有可能就越低,但电感量是越高,圈数可越少,线径也可选用更大号。


特针对磁环波形的疑问这一问题,通过本文来示例怎样识别磁环的波形。

  黄色的是初级电流的波形,其他两个是次级电压波形

  


  箭头所指之处就是饱和点,大家可以看到,在到达饱和以后,次级的电压几乎降到零了,这就是饱和以后,变压器就失去耦合的作用了,等于是一组空线圈了!电流在增加,可是感应电压却几乎降到0!

  


  从左向右数的第一组箭头所指之处是进入饱和点,大家可以看到黄色的电流向反方向逐渐增大,进入保护点后,蓝色的和绿色的次级线圈的电压波形几乎是0了,说明变压器已经没有耦合了,已经进入了饱和区了,次级没有电压,意味着三极管没有驱动信号,试问大家,这时两个三极管处于什么状态?


  结合波形,做如下假设:1.假设蓝色波形是上管线圈,流向是流出基极;2.假设绿色波形是下管线圈,流向是流向基极;3.电流向是流向灯管


  第一个拐点:上管开始进入导通,下管开始退出导通。初级线圈电流逐步增大,导入阴极电流趋向反向最大


  第二个拐点:上管彻底进入导通,下管彻底进入截止。初级线圈电流开始正向增大,导入阴极电流已经经过反向最大值,开始向正向最大过渡


  第三个拐点:上管开始退出导通,下管开始进入导通。初级线圈电流逐步增大,导入阴极电流趋向正向最大。


  次圈电流波形中的平滑段是两管子交替导通的死区时间。实际情况下,两个次圈的电流在电流流向定义相同时,波形应该是互为反相的。







来源:电磁兼容之家
电路电磁兼容理论
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-09-15
最近编辑:1月前
电磁兼容之家
了解更多电磁兼容相关知识和资讯...
获赞 20粉丝 124文章 2021课程 0
点赞
收藏
作者推荐

你知道磁环的工作原理与应用吗?

微 信公众 号:电磁兼容之家 第2374期铁氧体抗干扰磁心是近几年发展起来的新型的价廉物美的干扰抑制器件,其作用相当于低通滤波器,较好地解决了电源线,信号线和连接器的高频干扰抑制问题,而且具有使用简单,方便,有效,占用空间不大等一系列优点,用铁氧体抗干扰磁心来抑制电磁干扰(EMI)是经济简便而有效的方法,已广泛应用于计算机等各种军用或民用电子设备。铁氧体是一种利用高导磁性材料渗合其他一种或多种镁、锌、镍等金属在2000℃烧聚而成。在低频段,铁氧体抗干扰磁心呈现出非常低的感性阻抗值,不影响数据线或信号线上有用信号的传输。而在高频段,从10MHz左右开始,阻抗增大,其感抗分量仍保持很小,电阻性分量却迅速增加,当有高频能量穿过磁性材料时,电阻性分量就会把这些能量转化为热能耗散掉。这样就构成一个低通滤波器,使高频噪音信号有大的衰减,而对低频有用信号的阻抗可以忽略,不影响电路的正常工作。EMI 吸收环 / 珠是一种用铁氧体制成的元件,是一种吸收损耗型元件。其特性表现为:吸收高频信号并将吸收的能量转化成热能耗散掉,从而达到抑制高频干扰信号沿导线传输的目的,其等效阻抗中电阻值分量是频率的函数,随着频率而变化。EMI 吸收环 / 珠有效频段为 2 1000MHz ,性能最佳频段则为 5 200MHz ,在此频段吸收阻抗维持为一个常数。EMI 吸收环 / 珠选择时要注意:通过电流大小正比于元件体积,两者失调,易造成饱和,降低元件性能,避免饱和的有效方法是将电源的两根线(正、负或火、地)同时穿过一个磁环。磁环在使用中还有一个较好的方法是让穿过磁环的导线反复串几下,一来可提高穿过环的面积,增加等效吸收长度,二来充分利用磁环具有磁滞特点,改善低端特性。它的制造工艺和机械性能与陶瓷相似。其电磁性能与添加金属成分以及烧结过程中的时间,温度与气体成分有关。分装式磁环,要尽可能选用内径较小的,长度较长的磁环,同时,磁环一定要紧紧包住电缆,即磁环的内径尺寸要与电缆的外径尺寸紧密配合。 为什么要设置抗干扰磁环?电脑机箱内的主板、CPU、电源、及IDE数据线都工作于很高的频率状态下,所以导致机箱里存在着大量的空间杂散电磁干扰信号,而信号强度也是机箱外的数倍至数十倍!吸收磁环,又称铁氧体磁环,常用于可拆卸的分离式磁环,它是电子电路中常用的抗干扰元件,对于高频噪声有很好的抑制作用,一般使用铁氧体材料(Mn-Zn)制成。磁环在不同的频率下有不同的阻抗特性,一般在低频时阻抗很小,当信号频率升高磁环表现的阻抗急剧升高。使正常有用的信号很好的通过,又能很好的抑制高频干扰信号的通过,而且成本低廉。铁氧体是一种立方晶格结构的亚铁磁性材料。铁氧体材料为铁镁合金或铁镍合金,它的制造工艺和机械性能与陶瓷相似,颜色为灰黑色。电磁干扰滤波器中经常使用的一类磁芯就是铁氧体材料,许多厂商都提供专门用于电磁干扰抑制的铁氧体材料。这种材料的特点是高频损耗非常大,具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。对于抑制电磁干扰用的铁氧体,最重要的性能参数为磁导率μ和饱和磁通密度Bs。磁导率μ可以表示为复数,实数部分构成电感,虚数部分代表损耗,随着频率的增加而增加。因此,它的等效电路为由电感L和电阻R组成的串联电路,L和R都是频率的函数。当导线穿过这种铁氧体磁芯时,所构成的电感阻抗在形式上是随着频率的升高而增加,但是在不同频率时其机理是完全不同的。不同的铁氧体抑制元件,有不同的最佳抑制频率范围。通常磁导率越高,抑制的频率就越低。此外,铁氧体的体积越大,抑制效果越好。在体积一定时,长而细的形状比短而粗的抑制效果好,内径越小抑制效果也越好。但在有直流或交流偏流的情况下,还存在铁氧体饱和的问题,抑制元件横截面越大,越不易饱和,可承受的偏流越大。EMI吸收磁环/磁珠抑制差模干扰时,通过它的电流值正比于其体积,两者失调造成饱和,降低了元件性能;抑制共模干扰时,将电源的两根线(正负)同时穿过一个磁环,有效信号为差模信号,EMI吸收磁环/磁珠对其没有任何影响,而对于共模信号则会表现出较大的电感量。磁环的使用中还有一个较好的方法是让穿过的磁环的导线反复绕几下,以增加电感量。可以根据它对电磁干扰的抑制原理,合理使用它的抑制作用。铁氧体抑制元件应当安装在靠近干扰源的地方。对于输入/输出电路,应尽量靠近屏蔽壳的进、出口处。对铁氧体磁环和磁珠构成的吸收滤波器,除了应选用高磁导率的有耗材料外,还要注意它的应用场合。它们在线路中对高频成分所呈现的电阻大约是十至几百Ω,因此它在高阻抗电路中的作用并不明显,相反,在低阻抗电路(如功率分配、电源或射频电路)中使用将非常有效。磁环的匝数选择将整束电缆穿过一个铁氧体磁环就构成了一个共模扼流圈,根据需要,也可以将电缆在磁环上面绕几匝。匝数越多,对频率较低的干扰抑制效果越好,而对频率较高的噪声抑制作用较弱。在实际工程中,要根据干扰电流的频率特点来调整磁环的匝数。通常当干扰信号的频带较宽时,可在电缆上套两个磁环,每个磁环绕不同的匝数,这样可以同时抑制高频干扰和低频干扰。从共模扼流圈作用的机理上看,其阻抗越大,对干扰抑制效果越明显。而共模扼流圈的阻抗来自共模电感Lcm=jwLcm,从公式中不难看出,对于一定频率的噪声,磁环的电感越大越好。但实际情况并非如此,因为实际的磁环上还有寄生电容,它的存在方式是与电感并联。当遇到高频干扰信号时,电容的容抗较小,将磁环的电感短路,从而使共模扼流圈失去作用。结论:由于铁氧体可以衰减较高频同时让较低频几乎无阻碍地通过,故在EMI控制中得到了广泛地应用。用于EMI吸收的磁环/磁珠可制成各种的形状,广泛应用于各种场合。如在PCB板上,可加在DC/DC模块、数据线、电源线等处。它吸收所在线路上高频干扰信号,但却不会在系统中产生新的零极点,不会破坏系统的稳定性。来源:电磁兼容之家

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈