SPH粒子法的绮丽变奏:探索不拘一格的模型革新
SPH(Smoothed Particle Hydrodynamics)模型自提出以来,随着研究的深入和应用领域的拓展,出现了许多变体和改进方案以适应不同物理条件下的模拟需求。以下是一些主要的SPH模型变体: 1.经典SPH传统SPH:最基础的形式,直接基于拉格朗日描述,使用粒子来模拟流体或固体,并通过平滑函数对连续性方程、动量守恒方程和能量守恒方程进行离散化处理。 2.修正粘性SPH (Viscosity Corrected SPH, VCSPH)为了解决经典SPH在模拟剪切流动时出现的数值不稳定性和过度扩散问题,引入了修正后的应力张量项,从而更准确地模拟粘性流体行为。 3.密度修正SPH (Density Independent SPH, DISPH)旨在消除由于粒子分布不均匀导致的密度估计误差,这种变体独立于局部粒子密度,提高了算法对于复杂流动结构的模拟精度。 4.动态密度补偿SPH (Tensile Instability-Free SPH, TISPH)针对SPH在处理拉伸流体时容易出现的撕裂不稳定现象,通过动态调整粒子间相互作用强度来抑制这种不稳定性。 5.弱可压缩SPH (Weakly Compressible SPH, WCSPH)这是一种简化版本的SPH方法,适用于中等可压缩性的流体模拟,其中声速被设置得相对较高,以便减少计算成本并提高稳定度。 6.无粒子噪声SPH (Noise-Reduced SPH, NRSHP)采用各种策略如粒子压力重采样、粒子重新布局等技术,以降低粒子噪声对模拟结果的影响。 7.一致性SPH (Conservative SPH, CSPH)确保质量、动量和能量在粒子间的转移过程中严格守恒,改善算法的整体性能和稳定性。 8.树型结构辅助SPH (Tree-based SPH)利用树状数据结构加速邻域搜索,特别适合大规模粒子系统的模拟,可以显著减少计算复杂度。 9.高阶SPH (High-Order SPH)在基本光滑核函数的基础上引入更高阶的导数估计,提升空间分辨率和减小数值误差。 10.多相SPH (Multiphase SPH)用于模拟包含多个物态的系统,例如液体与气体之间的交互、自由液面波动以及固-液、气-液界面等问题。 此外,还有诸如弹性SPH、热SPH、耦合SPH(与其他数值方法结合)、粒子网格混合方法等多种变体,它们都是为了更好地解决特定物理现象或克服原版SPH在某些方面的局限性而发展起来的。 来源:CFD饭圈