流体被分类为不可压缩或可压缩。不可压缩流体在流动过程中密度变化不大。一般来说,液体是不可压缩的;水是一个很好的例子。相比之下,可压缩流体确实会经历可测量的密度变化。气体通常是可压缩的;空气是最著名的可压缩流体。气体的可压缩性导致了许多有趣的特性,例如稳态激波波,这在不可压缩流体中是不存在的。在这一部分,将对可压缩流体流动的基础知识进行广泛的介绍。
图1:流体分类
尽管气体是可压缩的,但在低速时它们经历的密度变化可能并不显著。以空气为例。图2显示了以马赫数为函数的密度变化图。密度变化表示为ρ/ρ0,其中ρ0是零速度(即,零马赫数)时的空气密度。
图2:马赫数函数的密度变化
对于马赫数高达0.3的情况,密度变化在ρ0的5%以内。因此,在这个范围内,实际上可以忽略密度变化,并将流动视为不可压缩的。但是,当马赫数超过0.3时,变化确实变得显著,并且在马赫数为1时,密度变化达到了36.5%。在马赫数为2时,密度变化高达77%。
不可压缩流和可压缩流之间的另一个重要区别是由于温度变化引起的。对于不可压缩流动,温度通常保持恒定。但在可压缩流动中,可能会发生显著的温度变化,导致能量模式之间的交换。
对于马赫数为2的气流,有两种重要的能量模式;动能和内能。在马赫数为2时,这些可以达到大约105焦耳的量级。当马赫2流动在停滞点被停止时,所有的动能(运动)被转换为内能(温度)。因此,在停滞点温度升高。当马赫数为2的流动在20°C的温度下然后被停止时,停滞温度高达260°C,如图3所示。
图3:停滞温度
这些事实的直接后果是,在计算可压缩流动时,必须考虑能量方程(这在不可压缩流动中没有进行)。此外,为了处理能量模式的交换,就必须理解流动的热力学。
热力学是一个涵盖许多主题的庞大主题。在这一部分,将仅回顾适用于气体动力学的基本概念。
系统、环境和控制体积
热力学的概念是通过系统和控制体积来发展的。一个系统是一个固定质量的实体。它的边界不是固定的,可以根据其内部发生的变化而变化。考虑下图所示的系统,即放在加热器上的容器中的水,选择系统是为了获得简化的解决方案。系统可以定义为(a)仅水,(b)水加容器,或(c)水、容器和周围空气,如图4所示。系统外部的一切都成为环境。
系统的属性通常通过记录它在周围环境中的变化来测量。例如,系统(a)中的水的温度是通过温度计中水银柱的升高来测量的,而温度计不是系统的一部分。
有时,系统和环境一起被称为宇宙。
图4:定义系统
控制体积,被用作流体力学部分描述的参考框架。流体动力学的积分方法利用控制体积,可以定义为流动中的一个窗口,具有固定边界。质量、动量和能量可以穿过这个边界。
密度、压力、温度等成为给定系统的性质。注意,这些都是可测量的量。此外,这些属性还表征了一个系统。要唯一地定义系统的一个状态(图5),我们需要指定两个属性,比如P,T或P,ρ或T,s等,其中P,T,ρ,s分别是压力、温度、密度和比熵。
图5:系统的状态
属性可以是_广泛的_或_密集的_。广泛的属性取决于系统的质量和。另一方面,密集的属性与质量无关。体积,V,能量,E,熵,S,焓,H是广泛的属性。相应的密集属性是比体积,v,比能量,e,比熵,s和比焓,h,通过考虑每单位质量的广泛属性获得。换句话说,
热力学定律
热力学围绕以下_定律_展开。
零定律
这条定律帮助定义了_温度_。它规定 - "两个与第三个系统处于热平衡的系统本身也处于热平衡。"
图6:热力学零定律
当处于热平衡时,意味着这两个系统处于相同的温度。在图6中,系统A和B独立地与系统C处于平衡。因此,A和B本身处于热平衡,并且它们处于相同的温度。
第一定律
热力学第一定律是能量守恒原理的声明。它简单地表述为"系统和环境的能量是守恒的。"考虑一个系统S。如果向系统添加了每单位质量的热量dq,并且系统所做的工作是每单位质量的dw,那么系统的内能变化du由下式给出,
其中u是每单位质量的内能或比内能。使用以下定义的比焓
第一定律的声明也可以写成
在上述方程中,只包括了一种形式的能量,即内能。其他形式,如动能,已被忽略。当然,可以将分析扩展以考虑所有形式的能量。
第二定律
第一定律是能量在_过程中_守恒的声明。它不关心过程的方向,而第二定律则关心。第二定律确定了过程的方向。这需要一个额外的属性,熵。
图7:热力学第二定律
有多种方式可以陈述第二定律。在本节中,使用的版本与气体动力学的研究相关。
考虑一个_可逆过程_。假设一个处于状态A的系统经历变化,例如通过添加热量Q,并达到状态B。在此过程中,环境从A'变为B'。让我们尝试通过移除等于Q的热量将系统的状态恢复到A。在这样做的过程中,如果我们也能将环境恢复到状态A',那么这个过程就被认为是可逆的。这只有在理想条件下才有可能。在任何真实过程中,都有摩擦或其他损失会耗散能量。实际上,不可能准确地将系统恢复到状态A,同时,环境恢复到A'。
假设过程是可逆的,第二定律定义了熵,使得
其中s是比熵。对于小的变化,上述方程被写成
概括方程,我们有
其中'='符号用于_可逆_过程,'>'符号用于_不可逆_过程。
因此,随着任何自然过程,系统和宇宙的熵都会增加。如果过程是可逆的,熵保持不变。这样的过程被称为_等熵_过程。
理想气体定律
一个理想气体遵守以下定律,前提是它只受到等熵过程的影响,
其中R是气体常数。对于给定的气体,R由下式给出
其中R*称为通用气体常数,对所有气体具有相同的值。它的数值是8313.5J/kg·mol·K。M是气体的分子量。下表给出了一些气体的气体常数值(以及其他重要常数)。
理想气体的第一定律
对于理想气体,内能和焓仅是温度的函数。因此,
气体的比热取决于热量是如何添加的 - 在恒定压力下或在恒定体积下。我们有两种比热,cp,恒定压力下的比热和cv,恒定体积下的比热。可以证明,
比热比,γ,实际上是气体分子所具有的自由度的数量的度量。代入给出,
一个热量理想气体是其中cp和cv是常数的气体。因此,
理想气体的第二定律
从热力学第一定律
现在假设一个理想气体,因此是可逆过程,给出
在状态1和2之间积分,给出,
如果我们假设过程是等熵的或_绝热的_(意味着没有热传递)并且因此是可逆的,那么上述方程导致
等熵流动的一个熟悉形式是P^(γ)=常数