《Factors Affecting the Fatigue Behavior of Fiber‑Reinforced Polymer Matrix Composites》
作者为C. Hemanth Kumar、Arunkumar Bongale和C. S. Venkatesha,文章发表于《J. Inst. Eng. India Ser. C》2023年6月刊。
文章主要综述了影响纤维增强聚合物基复合材料(FRPs)疲劳行为的关键因素,包括加载条件、纤维取向、失效机制、平均应力、测试频率和环境条件等,具体内容如下:
- 纤维增强复合材料在工程领域应用广泛,但在循环载荷下的疲劳失效是一个重要问题。
- 与金属相比,复合材料的疲劳失效具有多损伤模式且不易预测。
图1 复合材料和金属中因疲劳导致的损伤机制。
图2 弯矩损失与失效循环次数的关系。
- 各向异性效应:FRP复合材料的疲劳行为在很大程度上取决于组成层的类型及其相对于作用力的取向,强度、刚度等性能会随方向而变化。例如,在弯曲疲劳性能测试中,角度铺层试样的刚度损失比交叉铺层试样更显著,且在过高的疲劳载荷下,交叉铺层试样的损伤程度更大;短玻璃/聚酰胺 - 6复合材料中,沿主垂直纤维方向对齐的轴上试样的疲劳响应较低;硼纤维增强环氧树脂的疲劳寿命受纵横比的影响较大,低纵横比可显著提高复合材料的疲劳性能;对于不同纤维取向的玻璃纤维增强热塑性树脂(GFRC),随着疲劳应力水平的降低,疲劳强度增加,且添加了二次相颗粒的基体可提高复合材料的疲劳寿命。
- 平均应力效应:在设计经常承受疲劳载荷和叠加静载荷的FRP复合材料时,仅从完全反向加载条件获得的信息是不够的。研究表明,FRP复合材料的疲劳性能会随着施加应力水平和应力比的增加而显著降低,高应力水平和低应力比会显著降低疲劳寿命,而较高的应力比会由于循环应变幅度较低而增加复合材料的疲劳响应。
图4 不同取向的标准化S - N数据以及叠加的S - N曲线[49]。
- 损伤机制:FRP复合材料的损伤机制较为复杂,包括纤维/基体界面脱粘、基体开裂、分层和纤维断裂等。在低周疲劳(N < 10²)测试中,纤维断裂是主要机制;对于中等疲劳寿命(10² < N < 10⁶)测试,基体微裂纹是主要机制;在高周疲劳测试中,如果施加的载荷低于基体的疲劳极限,则复合材料不会受到显著损伤,且层压板具有无限的疲劳寿命。
- 频率效应:在较高的工作频率下,由于复合材料中的摩擦热和基体材料的粘弹性,FRP的疲劳性能会降低。例如,对于角度铺层(±45°)设计,疲劳寿命会随着测试频率的增加而降低;随着纤维体积百分比的增加,在较低频率下,由于基体开裂和纤维断裂,复合材料的刚度降解较为严重,而在较高测试频率下,会导致快速的基体开裂和刚度突然下降。
图5 短纤维增强复合材料(SFRC)的疲劳寿命周期与纵横比的关系。
- 环境效应:FRP复合材料暴露于不同的工作环境中,湿度、水分和温度等因素会影响其耐久性和疲劳寿命。例如,在蒸馏水和空气中,复合材料的疲劳寿命会因刚度降解而大幅降低,水分会导致纤维膨胀,可能降低纤维的强度和刚度,并导致纤维与基体脱粘;碳纤维与玻璃纤维的结合可提高混合系统的疲劳和结构性能;在不同湿度条件下,干燥样品的疲劳响应优于潮湿样品。
图6 不同纤维取向的S - N曲线图[51]。
图7 改性基体的S - N曲线[52]。
- 纤维的取向高度影响FRP复合材料的疲劳强度,疲劳强度会随着纤维纵横比的增加而增加,直到达到一定的纵横比时趋于平稳。
- 在循环载荷下,由于纤维 - 基体界面和基体中的损伤引发,通常会出现循环软化现象。
- 许多研究者使用各种因素来模拟平均应力的影响,疲劳寿命与应力比成反比。
- 在低周疲劳测试中,纤维断裂是主要机制;在中等疲劳寿命测试中,基体微裂纹是主要机制;在高周疲劳测试中,复合材料通常不会受到显著损伤,层压板具有无限的疲劳寿命。
- 测试频率的增加会缩短FRP复合材料的疲劳寿命,这是由于自热效应导致基体性能退化。
- 水分对FRP复合材料的疲劳响应有显著影响,会导致纤维膨胀、强度和刚度降低以及纤维与基体脱粘。
- 向基体中添加二次相颗粒可显著增加材料的静态强度,添加碳纳米管(CNTs)可提高层压板的承载能力和疲劳寿命,这是由于CNTs的存在增加了能量吸收和裂纹桥接的可能性。
图14 单向玻璃纤维增强塑料(GFRP)试样的断裂表面。