本文来源:《Computational design of vapor-cooled shield structure for liquid hydrogen storage tank》
摘要:从能源发展的角度来看,液态氢的低储存温度导致在液态氢储存期间存在侵入热通量和不可避免的蒸发损失,限制了氢能的发展。蒸汽冷却屏蔽(VCS)被认为是液化氢储存的杰出隔热解决方案。它利用从储罐蒸发的低温氢蒸汽来冷却绝缘层并减少储罐的侵入热通量。本研究对液态氢储罐的 VCS 结构进行了三维计算设计,并分析了 VCS 管直径、管数量和有效热导率等设计变量对隔热性能的影响。分析结果表明,与无 VCS 的模型相比,随着 VCS 管直径和管数量的增加,传热面积增加,侵入热流的减少从最小的 31.64%提高到最大的 66.55%。此外,随着多层绝缘热导率的降低,绝缘层的隔热性能得到改善;然而,侵入热通量与管直径和管数量之间的趋势不受影响。
引言
近年来,为了追求碳中和,可持续且环保的氢能已成为化石燃料和天然气等不可再生能源的优秀替代品之一。然而,由于氢储存所需的条件苛刻,如低温或高压,发展氢能面临困难。因此,许多学者从各个方面对氢储存技术进行了多项研究,以解决氢储存问题。目前主流的氢储存方法主要分为以下几种:压缩氢、液化氢、低温压缩氢、物理吸附氢、金属氢化物、复合氢化物、液态有机氢载体(LOHC)和液态有机氢化物 [1]。其中,液化氢方法由于储存的氢密度更大(20K 时为 71g/L)[2] 且能量密度更大(8MJ/L)[3],在相同储存体积下比其他氢储存方法能够储存更多的能量,因此常用于空间运输等有特殊限制的条件。然而,由于难以实现大气储存液化氢的温度条件,通常会有不可避免的每日蒸发储存损失,为 0.06~3%[4, 5]。因此,为了减少液态氢在储存期间的损失,许多学者研究了储罐隔热,以提高液化氢储罐的隔热性能,减少环境热侵入,例如可变密度多层绝缘(VDMLI)[6, 7],用性能更好的空心玻璃微球(HGMs)代替原来的泡沫材料 [8, 9],以及在多层绝缘(MLI)层中添加蒸汽冷却屏蔽(VCS)结构以降低绝缘温度。特别是,VCS 使用从储罐内部蒸发的低温蒸汽来冷却绝缘层并减少储罐侵入热通量。通过添加 VCS 结构,理论上液化氢储罐可以将环境对液化氢储罐的侵入热通量比原来的 MLI 层减少高达 59.6%[10]。
在研究领域,VCS 的概念可以追溯到 1957 年 [11],当时 VCS 首次被引入真空绝缘液化氢储罐中。结果表明,带有 VCS 的液化氢储罐的蒸发损失比没有 VCS 的储罐少 62%,从而证明 VCS 在液化气储存中起着重要作用。许多学者仍在研究 VCS,以确定最佳的绝缘方法。Kim 等人 [12] 进行了一维分析,发现串联双 VCS 的绝缘性能优于并联双 VCS。Babac 等人 [13] 使用二维分析建立了一个被管子包围的 VCS 模型,发现管子的直径越大,绝缘性能越好,VCS 的最佳性能位置确定在 MLI 层厚度的中间附近;此外,双 VCS 和单 VCS 的绝缘性能没有显著差异。Zheng 等人 [14 - 17] 使用一维分析方法,发现 VCS 在正常 MLI、VDMLI 和 HGMs 中的最佳绝缘位置分别为绝缘厚度的 50%、30%和 30%(从内到外)。他们还发现,双 VCS 提供了更好的绝缘(热流减少 59.44%),比单 VCS(热流减少 50.16%)。同时,随着外部温度和绝缘压力的增加(超过 10Pa),绝缘性能会恶化。Jiang 等人使用一维方法发现 VCS 的最佳性能位置在 MLI 厚度的 50%(从内到外)[10, 18]。他们还进行了与 VCS 相关的实验,发现 VCS 可以减少 19.6%的侵入热通量,并验证了在高外部温度和绝缘压力下 VCS 的隔热性能会恶化 [19, 20]。此外,Jiang 等人 [21] 使用三维分析,发现并联和串联 VCS 之间的绝缘性能没有显著差异。值得注意的是,VCS 的研究方法仍然主要基于一维分析,近年来,研究主题主要集中在氢的顺 - 反转化对绝缘性能的影响 [22, 23]。此外,Yang 等人 [24] 也使用一维分析研究了罐内液位与 VCS 性能之间的关系。发现随着液体填充率的增加,VCS 的隔热性能更加显著。
综上所述,目前对 VCS 的研究主要依赖于一维分析或实验方法。以前的研究侧重于 VCS 在绝缘中的最佳性能位置和 VCS 层数,以实现最佳的隔热性能。此外,研究人员分析了 VCS 管分布(串联和并联 VCS)对其隔热性能的影响。此外,还分析了绝缘层的真空水平和罐体外环境温度等环境因素对 VCS 隔热性能的影响。然而,对于 VCS 的设计,大多数研究没有考虑 VCS 的结构,只是固定一个模型进行分析,无法分析和讨论管直径和管数量等参数的影响。这些参数可以通过改变管内的流体流动状态来影响热传递,导致不同的 VCS 隔热性能,进一步表明不存在最优的设计解决方案可作为 VCS 生产的参考。因此,本研究构建了具有不同管直径和不同管数量的 VCS 的三维模型。使用商业程序 ANSYS FLUENT 评估 VCS 结构对其隔热性能的影响。最后,我们总结了 VCS 的最佳设计趋势,从而为生产 VCS 提供了参考依据。
数值细节
在使用 VCS 的储罐中,绝缘主要包括 MLI 层和 VCS,如图 1 所示。在某些情况下,会在罐壁上添加泡沫材料以增强绝缘层的隔热性能。MLI 层由反射层和间隔层组成,通过利用屏蔽材料的真空和低发射率来减少来自环境的侵入热通量。VCS 使用从储罐蒸发的低温气体来冷却绝缘层,降低绝缘层温度和侵入热通量。为了实现最佳绝缘,VCS 通常放置在 MLI 厚度的 50%处 [10, 14],将 MLI 分为内、外两部分。当侵入热通过外部 MLI 到达 VCS 时,部分热量被 VCS 内流动的冷却气体吸收,其余热量继续传递到内部 MLI,最终到达储罐。这种绝缘结构减少了热量侵入液化气体储罐,保持储罐温度低,减少了液化气体的储存损失。
图1 液化气储罐及保温层示意图。
2.1 物理模型
实际上,对于 VCS 管在屏蔽上的分布方式没有限制。MLI 由反射器和间隔器逐层堆叠而成。然而,为了简化分析模型,MLI 层被视为均匀固体,VCS 管分布仅考虑平行分布,如图 2 所示。详细的模型尺寸参考了 Jiang 等人的研究 [10, 20, 21]。在该模型中,VCS 屏蔽的直径、高度和厚度分别设置为 270mm、400mm 和 1mm,内、外 MLI 层的厚度均为 15mm。由于 VCS 管的存在,外 MLI 的管区域存在相应的突起。为了分析 VCS 管直径和管数量对隔热性能的影响,本研究构建了 VCS 管直径为 4、6、8、10 和 12mm 的模型,以及在屏蔽上均匀分布的 2、3、4、6 和 8 根管的模型进行模拟。
图2. 模拟模型的示意图。
2.2 控制方程
在不可压缩和稳态流动下,需要求解的质量、动量和能量守恒方程如下 [25, 26]
表1.本模型的边界条件
2.3 边界条件
在本研究中,使用模拟软件 ANSYS Fluent 2020 R2 分析绝缘模型的流体流动和传热。该模型中的速度和压力通过简单方法耦合。所有变量的离散化方案是二阶迎风格式。模拟中使用的氢属性来自 NIST 数据库 [27],相关函数与材料属性数据拟合,并通过 UDF 导入 Fluent 应用。入口质量流量和入口流体温度条件使用 BoilFAST 软件计算 [28]。本研究使用 BoilFAST 的商业代码对 Jiang 的实验中采用的储罐配置进行计算 [19, 20],以计算罐内蒸发的质量流量。储罐的容量为 12.56L,直径为 200mm,高度为 400mm。罐内释放气体的压力设置为 0.4MPa [29]。计算得到的入口气体最终质量流量为 4.57×10^ - 7kg/s,气体温度为 27.17K。这个估计值约为罐内初始液态氢质量的 4.4%,接近参考文献 [4, 5] 中报道的典型值。
图3。不同管径、不同管号的VCS示意图:(a)4管4 mm型号(b)4管12 mm型号(c)2管12 mm型号(d)8管12 mm型号。
绝缘模型的内部温度(靠近储罐)假设在氢的蒸发温度(20K)下保持恒定。此外,绝缘模型假设外表面的环境温度恒定(300K),以模拟液态氢在储罐中储存的典型环境条件。由于将 MLI 从原来的逐层堆叠模型简化为均匀固体模型,MLI 的热导率被设置为等效热导率进行计算。根据调查,在高真空条件下,MLI 的等效热导率大致分布在 1×10^ - 5~1×10^ - 4W/m・K 的范围内 [30];因此,我们选择 5×10^ - 5W/m・K 作为基本情况,并选择热导率为 1×10^ - 4W/m・K 和 1×10^ - 5W/m・K 的情况作为附加情况,以研究 MLI 热导率对绝缘层隔热性能的影响。详细的边界条件总结在表 1 中。
2.4 网格独立性测试
VCS 屏蔽的平均温度用于计算侵入热通量,以评估 VCS 的隔热性能。使用式(4)计算 VCS 屏蔽的平均温度,使用式(5)计算热通量。
(4)
其中, 是 VCS 屏蔽的平均温度, 是局部屏蔽温度, 是 VCS 屏蔽的面积。
(5)
其中, 是液化氢储罐的侵入热通量, 是 MLI 层的等效热导率, 是 VCS 层到冷边界表面的距离, 是绝缘冷边界温度。VCS 屏蔽的平均温度和储罐的侵入热通量都被用作 VCS 隔热性能的评估标准。
表2.不同VCS管直径的各模型的计算结果。
所有模型都用六面体网格构建,如图 4 所示。进行网格独立性测试以确保网格不影响模拟结果。每个模型都有六个不同网格数量的案例,这些案例的网格数量大约从 1000000 到 10000000。随着网格数量的增加,侵入热通量收敛,这一结果在所有其他模型中都得到了证实。选择侵入热通量变化小于 1%的案例以提高模拟过程的效率。最后,本模拟为 8 管 12mm 直径的模型选择了 6987160 的网格数量。
图4 网格模型示意图(以直径为12 mm的8管模型为例)
图5 进入不同管径的储罐的热流
图6 局部屏蔽温度检查点示意图:2管(a),8管(b)。
结果与讨论
3.1 VCS 管直径对隔热性能的影响
在本研究中,构建了直径为 4、6、8、10 和 12mm 的 4 管 VCS 模型,以研究 VCS 管直径对 VCS 隔热性能的影响。如表 2 和图 5 所示,随着 VCS 管直径的逐渐增加,VCS 屏蔽的平均温度逐渐降低,储罐的侵入热通量也逐渐降低,这意味着 VCS 的隔热性能得到改善。通过计算侵入热通量式(5),管直径为 12mm 的模型在隔热性能方面优于所有分析的模型。此外,与无 VCS 的模型相比,管直径为 12mm 的模型将侵入热通量降低了 54.56%,这表明 VCS 在增强隔热性能方面起着重要作用。这样的结果的主要原因是,随着 VCS 管直径的增加,VCS 管与屏蔽之间的接触面积增加,这增加了 VCS 管中冷却氢气的热传递率,从而提高了 VCS 的隔热性能。
为了从整体角度证明 VCS 的所有区域都被隔热,有必要分析 VCS 屏蔽中的温度分布。图 6 显示了 VCS 屏蔽上的温度检查点。由于 VCS 管均匀分布,假设所有相邻管之间的 VCS 屏蔽的温度分布相同。为了检查 VCS 屏蔽的温度分布,在两个相邻管的高度为 0、0.2 和 0.4m 处均匀取 10 个点。
图 7(a)显示了 4 管情况下,4mm 和 12mm 管直径的局部屏蔽温度分布。两个模型之间的温度差约为 24K,远大于 VCS 屏蔽内部的最大温度差。图 7(b)和(c)是相对位置从 0.6 到 1.0 的放大分布。4 管 4mm 和 4 管 12mm 的 VCS 屏蔽的最大温度差估计分别为 0.28K 和 0.38K,表明两种情况的差异小于 1K。这表明 VCS 屏蔽几乎处于热平衡状态。
表3.具有不同VCS管号的每个型号的计算结果。
3.2 VCS 管数量对隔热性能的影响
根据 VCS 管直径对隔热性能的影响结果,选择 12mm 直径的管模型来研究 VCS 管数量对 VCS 隔热性能的影响。构建并模拟了具有 2、3、4、6 和 8 个 VCS 管的模型。如表 3 和图 8 所示,随着 VCS 管数量的增加,VCS 屏蔽的平均温度逐渐降低。此外,储罐的侵入热通量减少,表明 VCS 的隔热性能得到改善。这些结果是因为增加 VCS 管的数量会导致 VCS 管与屏蔽之间的传热面积更大,从而导致 VCS 管的热传递率更高。
图7 直径4 mm、直径12 mm的4管型(a) VCS屏蔽温度分布;(b)扩大分布直径4 mm;(c)扩大分布直径12 mm。
同样,为了确认 VCS 屏蔽的温度分布,在图 6 所示的两个相邻管的高度为 0、0.2 和 0.4m 处均匀选择 10 个点进行检查。
图8 以不同管号的热流进入水箱。
图 9(a)提供了 2 管和 8 管模型(直径为 12mm)在不同位置的屏蔽温度分布,显示出温度几乎均匀,最大差异为 34K。从图 9(b)和(c)的放大分布可以看出,两个模型的最大温度差估计分别为 0.34K 和 0.52K。这表明 VCS 结构处于热平衡状态,与图 7 中的 4 管情况相似。
3.3 MLI 等效热导率对隔热性能的影响
如图 10 和图 11 所示,MLI 等效热导率的降低会增加整个隔热层的热阻,提高隔热性能,但不会实质性地影响 VCS 管直径、管数量与绝缘层侵入热通量之间关系的趋势,仍然是 VCS 管直径越大、管数量越多,VCS 的隔热性能越好。
图9。直径为12 mm的2管和8管模型的(a) VCS屏蔽温度分布;2管箱(b)放大分布;8管箱(c)放大分布
结论
本研究通过分析 VCS 管直径、VCS 管数量和 MLI 等效热导率对隔热性能的影响,对液态氢储罐的 VCS 结构进行了计算设计。本研究的结论如下:
1)关于隔热性能,随着 VCS 管直径和管数量的增加,VCS 管与 VCS 屏蔽之间的界面面积增加,隔热性能提高。与无 VCS 的情况相比,调整直径可使侵入热通量密度降低至 54.56%。同样,管数量的变化使最大侵入热通量比无 VCS 的情况降低了高达 66.53%。
2)VCS 管直径和管数量会影响 VCS 屏蔽的最大内部温度差;然而,差异很小 - 远小于不同 VCS 模型之间的温度差。因此,VCS 层可以被视为温度均匀层。
3)MLI 的热导率会影响绝缘层的隔热性能。然而,它不会影响 VCS 管直径、管数量与 VCS 隔热性能之间的趋势。
4)由于没有关于 VCS 结构设计的相关设计标准,在允许的范围内尽可能朝着更大直径和更多管数的方向生产 VCS 管以提高隔热性能是很重要的。