据搜狐汽车报道,8月初,韩国仁川,一辆奔驰EQE轿车在地下停车场内自燃,并引发严重火灾,导致该停车场内多达约140辆车受损。其中,有40辆汽车被完全烧毁。另据韩媒体报道,有23名居民因吸入浓烟入院治疗、近500户家庭停水停电、数百人被迫疏散。当地消防部门经过初步调查,认为火灾疑似由该车电池引起。
为缓解民众的担忧,韩国政府迅速召开紧急会议,讨论电动汽车安全问题,并要求汽车制造商主动披露其电动汽车所采用的电池品牌。截至发稿前,大众汽车集团、雷诺集团、宝马集团、Stellantis集团等多家车企的韩国子公司,已通过官网公开在韩销售电动车所搭载的电池信息。
迫于压力,8月13日,奔驰韩国公司已在其官网披露,该公司采购的电芯除韩国本土的SK、LG外,主要来自中国电池制造商宁德时代和孚能科技。此次事故中起火的奔驰EQE 350轿车,使用的是孚能科技生产的容量为88.8度电的NCM电池。
根据4年前奔驰与孚能宣布战略合作的新闻图片来看,孚能为奔驰提供的应该是自家的软包模组产品。
本次自燃事件让笔者想起了几年前上海地下车 库的特斯拉Model S自燃,后期特斯拉优化了电池包结构,将圆柱电池模组结构取消,改用阻燃胶填充空隙,将热失控电池与空气隔绝开,降低了热蔓延的风险(如下图)。
相对于圆柱电池,单体软包电芯具有更大的能量和非定向“开阀”的特点,而这些特点在与高能量密度NCM体系结合时会对整个电池包的热安全提出挑战。今天我们就来聊一聊NCM软包电池的安全特性。
1. 电池结构
首先来看一下常见的商用软包动力电池的结构(如下图)。在充满氩气的手套箱内打开电池的程序和组件拆卸。(a)从组件中提取的原始电池,(b)打开时用蓝色组装带包裹在袋包装内的电池堆,(c)剥离时阳极层顶部的隔膜,(d)阴极层在隔膜片顶部。
下图展示了软包电芯从外到内的材料,依次是外层铝塑膜、隔膜、铜箔负极片和铝箔正极片。
其中电芯堆由极片和隔膜组成,充放电时电流会从正负极极耳流入和流出,从下图可以清楚地看到电流流经极片时的电流分布。通常软包电芯的厚度设计较薄,这样可以得到更大的侧面面积,方便电芯散热。
2. 安全特性
在软包电芯开发过程中,安全测试是必不可少的,通常包括加热、挤压、针 刺、过充电和过放电,它们分别对应了电池在车辆中遭遇的极端危险情况,而测试过程中压力积聚/电池排气是锂离子电池遭受滥用时最常见的反应。
例如,
加热测试时:
电池加热导致电解液中使用的有机溶剂汽化;
由于电解质和电池组件之间的化学反应导致加速气体生成,额外的降解模式被激活;
电极、铝塑膜和隔膜的机械顺应性降低;
机械损伤时:
机械损伤(例如,由于挤压或短路)最常见的后果是由于失控的反应导致电池内压力迅速积聚,即使在容器未因最初的机械事件而受损的情况下,也会导致电池排气;
硬壳电池的密封缺陷通常会导致电池受到微量水分的污染,这些水分随后会与电解质发生反应,导致额外的压力积聚;
过充电时:
在极端温度下,电荷转移反应的动力学加剧会导致额外的磨损,降低电解质的电压稳定性,导致电解质分解成气态物质;
在过充电过程中产生的较低化学计量时,一些过渡金属氧化物阴极很容易从宿主晶格中释放氧气;
为了演示该模型的通用性,使用实验参数来模拟软包电池在过热和过充情况下的机械响应。热箱试验中电芯膨胀的模拟结果如下图所示,包括与压力积累相对应的细胞壁上的不均匀位移。与过度充电相比,电池内的压力要小得多。电芯泄压开始于靠近极耳的密封区,这是电芯外壳上机械最薄弱的点。
不同设计的电池,即使化学成分相同,过充电时的电压与时间曲线也是不同的。这一特征被纳入到模型中,包括不同比率的Ni, Co和Mn的不同速率表达式。这种方法,再加上电池内由于压力积累而产生的阻抗变化,有助于确定电池过充时失效的原因。
3. 热蔓延预防措施
软包电池是用柔性材料制成的,没有刚性结构。这减少了电池的整体重量,并提供了更多的设计自由度。如何在追求能量密度的同时保证乘客安全,是软包电池的一大挑战。
从力学角度,压缩垫对软包电池很重要,因为电池在温度循环时容易膨胀和压缩。压缩垫安装在电芯之间,当电芯膨胀和压缩时,对电芯施加一致的压力。这一点很重要,因为如果没有恒定的压力,电池内部极片表面会出现不平整,从而影响负极锂离子嵌入的均匀性,有局部析锂的风险。
从热学角度,电芯间的阻燃材料可以防止内部关键组件之间的火花蔓延,从而避免电池包内部短路或火灾。还可以设计和指定热界面材料,以增强热失控解决方案,包括间隙填料、热界面片、相变材料和导热绝缘体。常用的还有气凝胶。
然而,软包电芯的泄压点如果不出现在极耳处,非定向热量释放将对电池系统造成不可预估的热蔓延损害。
随着软包电芯化学体系从NCM523发展到NCM811,从安全角度来看,不断提高的单体能量密度并不是系统最优的解决方案,软包电芯模组想要兼顾性能和安全,还需要更完善的系统安全设计或者半固态、固态电池的出现才能挽回市场的信心。
以上是笔者关于动力电池安全的一些分享,希望对感兴趣的小伙伴有所帮助。
小明来电⚡为你充电,我们下期再见,拜拜~