4.3 大应变运动学
聚合物力学以及总体上的固体力学,涉及在组件受到外部载荷(如力、位移和温度)时应力和应变的演化。这个领域的关键基础之一与变形的运动学有关,也就是如何用数学方式表达一个感兴趣的物体的不同部分的位移。为了研究这个话题,我们将首先考虑一个在初始(时间t=0)时具有某种配置(形状和位置)的物体,然后在稍后的时间t具有另一种配置Qc,见图4.3。可以认为这个物体由一系列小体积元素组成,这些元素共同构成了这个物体。每个微小的体积元素称为材料点。运动学是描述变形事件期间材料点运动的主题。
正如之前讨论的那样,在小应变理论中,位移被假设为如此之小,以至于在加载事件期间物体的配置不会显著变化。这是小应变理论易于理解和使用的关键因素之一。然而,当变形是有限的时,物体的形状和位置在加载事件期间可能会发生较大变化。下面的例子说明了两种不同的方法来跟踪变形物体的运动。
为说明不同运动学公式的使用,我们将考虑一个橡皮筋,它在轴向上被一个随时间变化的力f(t)拉伸,如图4.4所示。在这个例子中,橡皮筋上的一个物料点被标记为x。保持对橡皮筋中应力和应变的跟踪的一种方法是一次关注一个物料点(例如,橡皮筋上的x位置)。如果我们指定x在未加载配置中的位置,那么我们就可以唯一地将该物料点的应力和应变表达为时间的函数。这种方法是通过在参考配置中按位置标记每个物料点来关注它们,这种方法称为拉格朗日法。
图 4.4 拉格朗日法用于表示变形的一个示例
另一种指定橡皮筋中应力和应变的方法是叠加一个固定的网格(坐标系),如图4.5所示,然后使用空间坐标来指定橡皮筋在加载过程中的应力和应变。通过这种方式,我们可以根据其当前的空间坐标来跟踪橡皮筋。这种描述运动的方式称为欧拉法。
图 4.5 欧拉法用于表示变形的一个示例
我们可以通过考虑一个最初位于X的物料点,并在时间t时位于x(t)来将前面的例子数学形式化。物料点的运动可以通过以下映射来描述:
这里矢量函数X接受一个初始位置向量和一个时间作为输入,并给出指定时间的该材料点的位置作为输出。矢量X被称为参考(或材料)位置,矢量x被称为材料点的当前(或空间)位置。
在研究连续体量时,通常需要跟踪和记录某个物体的特定区域。如上例所述,有两种方法可以做到这一点。一种方法是根据感兴趣区域的初始参考位置对每个点进行标记。这样我们可以表达如下语句:“在时间t时,最初在位置X的材料点的速度为V。”这种将所有内容引用回初始配置的表达方式被称为拉格朗日形式。另一种保持对物体运动跟踪的方法是利用当前配置对材料点进行标记。这种方式允许我们说:“在时间t时处于位置x的材料点的速度为v。”这种将所有内容引用到当前配置的表达方式被称为欧拉形式。本文本的术语与近期的连续介质力学文献紧密相符(例如,Holzapfel [2])。具体来说,参考配置中表达的量用大写字母表示,而在当前配置中表达的量用小写字母表示。
以下讨论将使用张量符号和张量代数。为了完全理解连续体力学理论,重要的是要对张量是什么以及它们的运算有深入的了解。接下来的部分将对这一主题进行简要概述。