关键词:间歇泉,瞬态,VOF,Fluent,六面体网格
随着城镇化进程的快速推进,城市下垫面的透水性能不断降低,内河水面率不足,调蓄功能锐减,加之全球气候变化导致强 暴雨等极端天气频发,城市排水系统排涝能力严重不足。城市深层调蓄隧道系统能有效增加雨水调蓄能力,防止内涝,且由于隧道埋深较大,可充分利用城市深层地下空间,避免大量征地和拆 迁,在日本东京、美国芝加哥及加拿大埃德蒙顿等城市已经应用多年。近年来,随着国内对城市防洪问题的日益重视,广州、上海、武汉和成都等地已率先开始了深层调蓄隧道工程的规划与建设。竖井(入流井、检修井和通气孔等)和调蓄隧道是地下调蓄隧道系统中的两个关键过流建筑物。受城市地下管网通气设施布置条件限制,在调蓄隧道充水尤其是快速充水时,竖井内的水流极易封堵隧道内尚未排出的气体,从而形成滞留气团。在水流冲击、压力波动和表面张力等因素的综合作用下,滞留气团在释放过程中,系统内可能产生水气混合物从竖井内涌出地面的“井喷”(geyser)现象。
图1 国外井喷现象
接下来尝试模拟一篇SCI论文中间歇泉现象,如图2所示,初始气团在水平管道左侧,水平管道两侧为压力边界条件,上方出口为压力出口。
图2 计算说明 |
网格处理采用Fluent meshing绘制六面体网格,简单快捷,对边界层进行了处理,网格数量可控,网格质量在0.4以上。
图3 六面体网格 |
模拟计算在Fluent中完成,两相流模型采用VOF进行处理,能够较好的模拟自由液面的形变。湍流模型采用RNG k-epsilon湍流模型。该模拟中相关设置如图4所示,该问题的主要复杂点在于网格的处理和Fluent中设置和参数的选择。例如边界层处理以及六面体网格采用合适的算法,fluent中算法参数的选择,合理的边界条件设置。
图4 网格和Fluent相关设置 |
如图5所示,初始状态采用patch功能进行处理,可以看出,初始状态水相和液相分明。模拟过程中,气泡的运动可见。
可以看出,采用VOF处理水汽两相流具有良好的优势,能够模拟出界面的变化,运动。同时采用Fluent meshing绘制网格具有简单快捷的优点。
图5 模拟初始状态 |
图6 模拟过程状态 |