从宏观上理解作用在超表面上的电磁场,以及散射体分布对电极化和磁极化密度的影响。
表面电极化和磁化密度分布导致宏观电场和磁场(定义为入射场加上整个片的场)的不连续性。将散射体的分布视为与所讨论结构的任何大尺度维度(可能是波长,或者可能是其他一些宏观长度)相比是密集的。意味着平均场的变化足够缓慢,以至于其在表面上的不连续性可以看作是由电极化的连续表面分布造成的Ps和磁化强度Ms。
As shown below👇
超表面的宏观场
宏观场被定义为入射场+整个板材的场,取平均值,以便消除场在板材中分离量级上的快速变化。
该场与散射体平面中的连续电极化和磁极化密度有关,可能分布不均匀。宏观场在板材的所有点上都有不连续性(从经典边界条件来看)。这些不连续性可以用下式表示,
极化和磁化密度是通过平面中电偶极矩和磁偶极矩的密度得到的。这些偶极矩反过来取决于作用在每个散射体上的场,以及散射体的极化率。作用场被定义为入射场,加上来自整个平面的电场和磁极化密度。不包括以所考虑的散射体的位置为中心的半径为R的小圆盘的作用。具体来说,作用在rl处的散射体上的场可以通过从宏观场中减去半径为R的圆盘产生的场来获得。可以表示为
同理,
圆内的电磁场
磁场和电场Hdisk和Edisk,由在z=0的x-y平面半径为R的“小”的圆来计算。
所说的“小”是指可以假设表面磁化强度和极化密度在圆上大致恒定。为了找到具有均匀表面极化和磁化分布的圆盘的电场和磁场,将使用电势和磁矢量势。在极化面电流和磁极化面电流同时存在的情况下,磁场可以写为电势和磁势的叠加,同理电场可以写成磁势和电势的叠加,
电矢量势和磁矢量势,分别可以通过求解亥姆霍兹方程来获得,该方程的源包含圆上的表面电流。对于极化圆,亥姆霍兹方程可以写成如下:
确定了电势矢量和磁势矢量,可以将这些矢量代入电磁场表达式中,以求出圆盘的电场和磁场。
GSTC有几个重要的潜在应用。在处理场的数值建模时,使用任何标准技术,如FDTD、FEM或矩矩法,减少计算时间和存储要求的一个重要考虑因素是,为了达到足够的计算精度,必须将空间区域精细地细分为单元或网格。当被分析的结构包含非常小的特征时,空间格网必须相应地精细,从而导致需要确定的未知数大大增加,因此计算速度更慢,更耗费资源。如果超膜可以被本文中推导的GSTCs替换,那么所需的空间分辨率将要粗糙得多(如果我们愿意放弃对超膜内部或附近的场的精确知识)。因此,可以大大节省计算机内存和仿真时间。