首页/文章/ 详情

cst和hfss中的网格设置

2月前浏览3132



在CST和HFSS这两种电磁仿真软件中,网格设置是仿真过程中的关键步骤之一,它直接影响到仿真的准确性和效率。

CST中的网格设置



   

CST软件提供了多种网格类型,主要包括六面体网格、四面体网格和三角面元网格等,每种网格类型适用于不同的求解器和算法。

  1. 网格类型选择

    • 六面体网格:适用于FIT(有限积分技术)和TLM(传输线矩阵)求解器。这种网格类型在处理复杂几何结构和材料时具有较高的精确性,但设置相对复杂。

    • 四面体网格:适用于FEM(频域有限元)求解器。四面体网格在处理复杂形状时更为灵活,但计算精度可能略低于六面体网格。

    • 三角面元网格:适用于矩量法的Surface求解。


  2. 网格设置的充分条件

    • 强条件:满足每个波长20-35条网格线;结构细节一定要分辨;一个网格中满足三种情况(一种介质、两种介质、三种介质,如空气-介质-空气)。

    • 弱条件:同样满足每个波长20-35条网格线;但在场强强处要求结构细节一定要分辨;且场强强处无短路。

  3. 六面体网格设置步骤

    • 选择合适的模板(如平面天线与波导天线)。

    • 设定初始网格密度(如微带结构设置35/35/50,波导结构设置25/25/30)。

    • 最大化最小网格步长(Min.mesh step),以减少仿真时间。

    • 根据需要设置最小网格步长(Smallest mesh step),以确保关键结构的细节被准确捕捉。

    • 使用自适应网格加密功能,在关心的频带内加密网格,以提高仿真精度。



HFSS中的网格设置

As shown below👇


HFSS



HFSS是Ansys公司推出的一款电磁仿真软件,其网格设置同样重要。

  1. 网格类型

    • HFSS主要使用四面体网格进行仿真。四面体网格在处理复杂形状时具有较高的灵活性。

  2. 网格设置方法

    • 初始网格设置:通过定义求解频率、控制初始网格密度等参数来设置初始网格。

    • 自适应网格加密:HFSS提供了基于波长的网格加密功能,可以根据仿真过程中的场变化自动调整网格密度。用户需要设置合适的Lambda Refinement参数来控制网格加密的程度。

    • 收敛判据设置:设置合适的收敛判据(如Delta S),以确保仿真结果的准确性。


形状不一尤其是包含了复杂曲面的几何模型,会导致网格初始化时产生各种长短不一的网格,而HFSS中有三个变量来描述离散网格的好坏,分别是


Surface Deviation,表示四面体的面与实际模型曲面的距离

Normal Deviation,表示相邻四面体网格平面的法线夹脚

Aspect Ratio,表示四面体网格最边边与最短边的比值




网格划分的目的


高频电磁场仿真会关心网格的以下几个方面:

1、网格剖分成功率,也就是模型丢到软件中,点开始仿真后会不会提示网格剖分出错。此类问题多半会在求解模型是由外部导入的情况下发生;

网格剖分效率,也就是剖分得快不快。这点对于求解大模型很重要。比如手机整机,大尺寸阵列天线等等;

2、网格剖分精度,可以同等理解为仿真结果准不准确。前面我们也提到过,网格剖分的精度(密度)直接影响求解精度。而所谓精确的网格是指模型的关键区域(电场梯度变化大)得到了更密网格的表征。这也是做仿真的难点之一,对于软件使用者有较高的要求,通常需要对求解模型的大致电磁场分布情况有所了解才能准确判断。

3、网格操作易用性,本质上易用性是和前三个方面相互关联的,但也有一些额外因素会影响使用这的体验,比如界面操作逻辑和美观度等等。




End



   

无论是CST还是HFSS,网格设置都是电磁仿真过程中的重要环节。用户需要根据具体的应用场景和需求选择合适的网格类型和设置方法,以确保仿真结果的准确性和效率


来源:灵境地平线
HFSS电场CST材料控制曲面ANSYS
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-08-14
最近编辑:2月前
周末--电磁仿真
博士 微波电磁波
获赞 22粉丝 15文章 163课程 0
点赞
收藏
作者推荐

期刊观察--超表面电磁场的转变条件

回顾历史,电磁波和超表面之间的相互作用问题已经在许多不同的背景下进行了广泛的研究,但总是有一些特定的条件限制了结果的普遍性。前言二维(2D)超材料,或称为超表面,如果设计得当,它可以具有某些所需的反射和透射特性(例如,全反射或全透射)等。以电极化和磁极化密度为特征的电小散射体表面分布上的均匀电磁场的广义片状过渡条件(GSTC)可以更为适用位于均质介质中的超表面。GSTCsAsshownbelow👇关于超表面表征的研究进展1933年,Strachan可能是第一个对来自具有可偏振散射体分布的表面的入射光波的反射和传输进行研究的人。在他的工作中,Strachan考虑了存在介电界面的情况。然而,我们认为,就垂直于界面的电场E和表面极化密度Ps而言,他对这种效应的处理是不正确的。此外,他只使用了电极化,而忽略了磁极化密度。Strachan还忽略了其中一个切向坐标上可能的场依赖性,并且没有考虑偶极子之间的相互作用效应。1940s,Sivukhin向前迈出了一步,他考虑了方阵中偶极子之间的相互作用效应。同样,只考虑了电表面极化效应,而对介电界面的考虑还有一些不足之处。1950s,Wait计算了从完全导电表面反射的波,该表面具有均匀分布的半球形凸台,其电常数是任意的。由此产生的边界条件是单侧的,而不是过渡性质的,它将场连接到赫兹势,而不是与场本身相连。1960s,Vainshtein考虑了一种具有特殊横截面形状的二维“粒子”(线)的周期性阵列。Vainshtein没有用电极化率和磁极化率密度来表示边界条件,而是用与共形映射相关的其他参数来表示。2000年,Holloway和Kuester研究了表面粗糙度对导体表面在二维的影响,扩展并综合了Wait、Vainshtein等人的工作。他们利用电极化和磁极化密度与均匀场之间的关系,获得了单侧广义阻抗边界条件(GIBC)。这项工作仅针对表面粗糙度的周期性分布进行。1970-2002年,Bedeaux等人对这类问题进行了广泛的研究。关于他们工作的全面观点可以在书中找到。具体引用他们的一些工作,Bedeaux只考虑了电极化密度,但确实考虑了相邻偶极子之间的相互作用,以及介电界面处电场法线分量的不连续性。与Strachan的工作一样,我们认为需要仔细研究这种界面处理方式以判断其有效性。在1974-1989年,Bedeaux等人使用统计理论来确定薄岛薄膜的表面介电化率。通过使用描述散射体随机位置的成对分布函数来解释岛屿之间的相互作用。还考虑了两种介质之间的界面,但只研究了电偶极子的影响,忽略了磁偶极子分布的影响。Wind等(1984)已经包括了电极化和磁极化效应,但在他们的模型中,偶极子的分布从一开始就被认为是连续的。这是因为他们使用了连续的薄膜层,而不是使用单独的岛,这阻止了将他们的结果与问题的“微观”结构联系起来。在所有这些工作中,表面的特征是表面介电化率或介电常数,而不是等效的广义片状过渡条件(GSTC)。在1970s,Dignam也处理过散射体随机分布在表面(而不是大多数工作者假设的周期阵)的情况。考虑了相邻偶极子之间的相互作用。然而,他们没有在研究中包括明确的边界条件,也没有包括磁偶极子的影响。1983年,Twersky对声学超膜的行为进行了广泛的研究,包括随机分布和非镜面散射场的影响,但他的公式相当复杂,人们不容易从中提取有关过渡条件的可处理信息。Persson等在他们的工作中只考虑了电极化密度,并将表面分布嵌入到均匀介质中。在一定的限制范围内,他们考虑了散射体在表面的随机分布,但只得到了平面波的反射系数和透射系数,而不是更一般的过渡条件。1991年,Barrera等也研究了随机分布的情况,仅针对电偶极子,但包括介电基板的影响。1989年,Langreth确定了一个有效的边界条件,但只考虑了电偶极子,没有考虑相邻偶极子之间的相互作用。Dawes等没有获得边界条件,只计算了平面散射体的一些特定周期性阵列的平面波的反射系数和透射系数。1991年,Rumyantsev等考虑了磁极化和电极化密度,同时还考虑了偶极子之间的相互作用。他们认为超膜两侧的材料是相同的。然而,他们只研究了平面入射波的情况,因此他们的过渡条件仅在空间傅里叶变换域中有效表达。1999年,Maslovski等提出了方形周期性散射体阵列的精确交互场。然而,他们并没有追求推导到获得边界条件的地步。Tretyakov等提出了电偶极子阵列的结果,但只提到磁偶极子情况可以通过使用对偶性来处理。2000年,Yatsenko等研究了存在两个平行超膜的情况。他们已经考虑了相互作用场,但没有得到等效的边界条件。Simovski等和Graham等研究了高阶多极分布的影响,但仅限于电多极子的情况。前者根据电介质薄层的有效介电常数来解释其结果,而不是给出有效的边界条件。极化率模型的理解将散射体的分布视为与所讨论结构的任何大尺度维度(可能是波长,或者可能是其他一些宏观长度)相比是密集的,但从散射体本身的大小来看,散射体的分布是稀疏的。第一个条件意味着平均场的变化足够缓慢,以至于其在表面上的不连续性可以看作是由于电极化的连续表面分布造成的Ps和磁化强度Ms.第二个条件意味着,作用在其中一个散射体上的场可以通过假设所有其他散射体都被连续极化和磁化密度所取代来计算。表面电极化和磁化密度分布导致宏观电场和磁场(定义为入射场加上整个片的场)的不连续性。然而Ps和Ms它们本身就是对离散电偶极子和磁偶极子分布进行平均的结果pl和ml,其中integerl表示特定的散射体。每个偶极矩都与作用在散射体上的场成正比,该场涉及散射体的电极化率和磁极化率的成比例因子。然后,计算要求能够识别作用在该位置的散射体上的电场和磁场r⃗l哪里r是一个位置向量。该作用场不能是前面提到的平均场或宏观场,因为该场在散射体位置是不连续的,而作用场或微观场必须是连续的且定义明确。End参考文献:[1]A.GhaneizadehandM.Joodaki,“GeneralizedSheetTransitionConditions(GSTCs)inElectromagneticMetasurfaceModeling,”IEEEAccess,vol.12,pp.74305–74326,2024,doi:10.1109/ACCESS.2024.3406160.[2]E.F.Kuester,M.A.Mohamed,M.Piket-May,andC.L.Holloway,“Averagedtransitionconditionsforelectromagneticfieldsatametafilm,”IEEETransactionsonAntennasandPropagation,vol.51,no.10,pp.2641–2651,Oct.2003,doi:10.1109/TAP.2003.817560.[3]C.L.HollowayandE.F.Kuester,“Impedance-typeboundaryconditionsforaperiodicinterfacebetweenadielectricandahighlyconductingmedium,”IEEETransactionsonAntennasandPropagation,vol.48,no.10,pp.1660–1672,Oct.2000,doi:10.1109/8.899683.来源:灵境地平线

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈