机电君:再次强调多关注逻辑思路,结论还有数据以自己的实际测试为准
本文针对某电动车时速23km/h经过鹅卵石路时方向盘振动大带来手部酥麻感觉的问题,通过整车评价、整车测试及模态识别等提出相关结构优化方案。
1 研发车型的问题描述
某电动车匀速经过鹅卵石路时,尤其是车速固定为23km/h时,方向盘振动明显,驾驶人员产生手部酥麻感,而且车辆一致性较好,同一批车辆均存在此问题,和竞品车型相对比,主观评价分值仅仅为5.5分,常规状态方向盘振动评分应在6分以上,故此进行优化整改。
针对该问题,运用专业数据采集设备,在方向盘12点位置处布置加速度传感器,采集该行驶工况下方向盘的振动信号并进行分析处理,数据显示,在该行驶工况下,方向盘X向振动幅值为3m/s^2,Z向振动幅值为7 m/s^2,且振动幅值处于同一频率28Hz处,如图1所示。通常鹅卵石路面方向盘振动可接受幅值应不超过2m/s^2。
图 1 方向盘振动频谱图
2 研发车型问题机理分析
方向盘作为转向系统的关键零部件之一,通过转向管柱与转向机相连,转向管柱通过仪表板横梁固定在车身上,而转向机通过转向拉杆和车轮轴头相连,转向系统和车身的连接关系相对复杂,所以出现方向盘振动问题,需要系统地梳理相关原因,一般激励包括动力总成或者轮胎,传递路径为悬架系统以及车身,振动传递的主要路径如图2所示。
图 2 方向盘振动传递路径示意图
根据噪声振动传递分析思路“源—路径—响应”,首先进行路面激励分析,激励频率与车速及鹅卵石块间距相关,采集路面常见的X向间距为20~25cm 区间及15~20cm区间。
车辆行驶时,轮胎与石块发生周期性接触,造成路面周期性激励,卵石路路面的激励频率为每秒钟轮胎经过的卵石个数,主要激励方向为X向,在23km/h车速下,车辆每秒钟行驶6.39m,考虑图3中卵石间距为20~25cm,车辆每秒钟经过的卵石个数约25~30个,即路面激励频率为25~30Hz。测试场地东西两侧路面X向激励频率是25~30Hz与系统模态耦合,振感强烈,中间路面X向激励频率为30~40Hz与系统模态避频振感较弱,如表1所示。测试轴头三个方向的振动数据见图4。前后轴头在28 Hz 频率处的振动,X向比其他两个方向幅值大,因前后悬架模态差异较大,说明此处激励与模态无关,X向激励作为主激励且由路面引起。
图 3 常见鹅卵石块间距
表 1 激励频率统计表
4 前后轴头振动频谱图
接下来进行传递路径分析,卵石路激励频率为25~30Hz,激励通过“转向节—控制臂—控制臂衬套”传递到副车架,考虑控制臂斜向布置(如图 5 所示)的情况,激励在沿着控制臂传播的过程中,会产生X向的分量,即轴头X向振动在X向的投影分量,但螺旋簧托臂的角度布置会导致控制臂整车X向刚度增大,使得衬套整车X向隔振性能变差,更容易将路面激励通过控制臂传递至副车架及车身。
结合以上分析,螺旋簧托臂角度α(图 6)决定轴向与径向刚度的贡献比例。由于衬套本身结构导致径向刚度远大于轴向刚度,α 角度越大,径向刚度贡献越大,整车 X 向刚度越大,导致衬套X向隔振性能越差。
图 5 控制臂布置角度示意图
图 6 螺旋簧托臂布置示意图
基于激励频率分析,总结车身及底盘系统20~30Hz频段内模态,依据模态振型识别相关系统的贡献量,如表2所示,悬架及车身系统关于鹅卵石振动问题关重模态为后悬架X向模态和车身2阶弯曲模态。经实车测试,电机与后悬架X向平动模态为28.2Hz,车身2阶弯曲模态为29.1Hz,如图7和图8所示。问题产生的机理为路面宏观不平度激励轴头X向振动,由于后悬架 X 向前后摆动模态28.2Hz 与激励频率耦合,加上车身2阶弯曲模态29.1Hz 的进一步放大作用,导致振动传递能量大,引起方向盘抖动。
图 7 电机与后悬架模态振型图
表2 系统模态振型分析表
图 8 车身 2 阶弯曲模态振型图
继对“源”和“路径”分析之后,开展对“响应”即方向盘的测试验证,其模态振型图(图 9)显示Z向模态为42.3Hz,故排除方向盘模态耦合放大振动的可能。
图 9 方向盘模态振型图
3 方向盘振动问题诊断及对策
针对上节中的方向盘振动产生及传递机理分析,本节重点从关重件相关模态、布置方式及衬套刚度进行试验测试验证,按照振动信号传递过程,依次从“源—路径—响应”开展系统优化。
3.1 底盘激励分析及优化验证
测试验证底盘激励主贡献方向为X向,由于控制臂斜向布置(当前角度为 27.04°),衬套X向刚度增大,隔振性能变差,X向振动分量衰减较少,对后悬架建模(图 10),在轮胎接地处施加X向单位加速度激励,仿真副车架安装点X向振动响应。验证结果显示,当控制臂角度调整为0°时,此时轴头振动在控制臂上X向的分量为0,副车架安装点X向力响应峰值频率由28 Hz移动至24Hz,峰值降幅为25%,如图11所示;Z向力响应峰值频率同样由28Hz移动至24Hz,峰值水平相当,如图12 所示。由此可得出结论,控制臂布置角度越小,副车架安装点X向振动幅值越小,且频率越低,更有利于提高悬架的隔振性能。对标部分品牌车型,控制臂布置角度范围在 8°~18°之间(图 13),主要集中分布在13°~16°左右,因此建议控制臂布置角度小于15°。
图 10 后悬架模型示意图
图 11 控制臂角度变化副车架安装点 X 向响应图
图 12 控制臂角度变化副车架安装点 Z 向响应图
图 13 对标车型控制臂布置角度统计表
优化控制臂角度,将布置角度优化为13.6°,经过客观数据采集分析,如图14所示,方向盘X向振动幅值由3 m/s^2降为2.64m/s^2,Z向振动幅值由7m/s^2降为6.53m/s^2,主观评价振感稍减弱,优化方案有效。
图 14 控制臂角度优化后方向盘振动频谱图
3.2 悬架模态分析及优化验证
根据表3中系统模态振型分析,后悬架(电机和悬架)X向模态为26.8Hz,与方向盘振动频率接近,且均为X向,分析电机布置方式,研发车型电机为同向布置,如图15所示。同向、异向布置指的是三个悬置的轴向布置方向是否一致,一般电机悬置的轴向刚度最低(X 方向),如果三个悬置轴向都是整车X方向布置,电机悬置的X方向刚度偏低,X向模态偏低;调成异向布置,X方向模态提高,仿真分析电机异向布置(图 16)的后副车架安装点响应,调转左后、右后悬置X、Y向,X向响应幅值降低30%,幅值频率由26.8Hz变为31Hz,如图17所示,Z向响应幅值降低46%,幅值频率同步变为31Hz 如图18所示。测试电机异向布置后悬架模态振型图见图19,后悬架X向平动模态整体变为38.3Hz。
图 15 电机同向布置悬置方向示意图
图 16 电机异向布置悬置方向示意图
图 17 电机异向布置后副车架安装点 X 向响应示意图
图 18 电机异向布置后副车架安装点 Z 向响应示意图
图 19 电机异向布置后悬架 X 向模态振型图
将电机布置方式由同向改为异向,调整副车架电机悬置安装位置,对方向盘振动进行测试,数据如图20所示,方向盘X向振动幅值降至2.22m/s^2,Z向振动幅值降至6.28 m/s^2,优化方案有效。
图 20 电机异向方向盘振动频谱图
3.3 传递路径分析及优化验证
基于上述对悬架布置及电机布置方式的优化验证,效果相对有限,底盘振动信号经副车架和车身连接处传递至车身,在传递路径上开展分析优化,重点关注衬套刚度和车身模态,衬套刚度影响振动信号传递过程衰减,车身模态容易引起模态耦合从而产生共振。
3.3.1 衬套刚度优化验证
针对该研发车型,后副车架衬套刚度提升30%,其中左前、右前衬套X向限位块和衬套间隙更改为5mm,左后、右后衬套间隙改为6 mm,后衬套硬限位变为软限位,如图21所示。方案实施后,主观感受方向盘振动有较大降低,客观测试数据如图22所示,方向盘Z向振动由7.33 m/s^2降低至5.28m/s^2。
图 21 后副车架衬套优化示意图
图 22 优化衬套刚度方向盘振动频谱图
3.3.2 车身模态分析及优化验证
基于以上对底盘激励及模态优化的验证效果来判断,车身弯曲模态对该问题最为关键,通过振型识别主要变形区为门槛梁、骨架等。利用部件拆除替换的方法,识别影响整车弯曲模态的关键要素。
仿真分析影响车身模态较大的关键因素,包括机舱附件质量、电池包、车身骨架,通过分析对比,影响最大的就是电池包,电池包安装在门槛梁上增加门槛梁刚度,机舱与门槛梁搭接、门槛梁与后纵梁搭接处为刚度过渡区域,2阶弯曲模态反节点出现在此处,从而影响车身弯曲模态,断开电池包与车身安装点(前部2个,后部 4个,如图23所示),车身弯曲模态由29.1Hz降低至23.4Hz(模态振型图如图24所示),与后悬架X向模态28.2Hz避频,按照此方案开展测试验证,测试数据如图25所示,方向盘X 向振动幅值降至0.82m/s^2,Z向振动幅值降至0.95 m/s^2,主观评价振感消失,测试评价断开电池包部分安装点对整车路噪及操稳等性能方面均无影响。
图23 电池包安装点示意图
图 24 断开电池包部分安装点车身模态振型图
图 25 断电池包安装点方向盘振动频谱图
通过以上几种方案分析验证,对比测试结果,车身弯曲模态对鹅卵石路方向盘振动问题影响最大,其他几个方案有效果,但不能彻底解决问题,最终将车身弯曲模态作为问题真因,优化电池包安装点布置,甚至对车身梁截面做出设计要求,尤其是变形较大的区域,例如,纵梁没有大的突变、梁与梁的搭接连续无断层,将车身弯曲模态和底盘激励进行频率解耦,从而彻底解决鹅卵石路方向盘振动明显的问题。
4 结束语
本文阐述了某纯电动乘用车以23km/h匀速行驶经过鹅卵石路面方向盘振动大的问题分析与优化,按照“源—路径—响应”的分析排查思路,运用LMS 数采系统,在验证改变底盘激励和电机布置方式无法彻底解决问题后,确定引起方向盘振动问题出现的原因为车身2阶弯曲模态和底盘激励频率耦合,从而引起振动能量传递增大。问题最优解决方案即优化电池包安装点布置,对车身变形较大的区域进行截面优化设计,将车身弯曲模态和底盘激励进行频率解耦,从而抑制振动能量传递,方案实施后方向振感消失,主观评价可接受。
网络整理,仅限内部分享,禁止商用
公 众号:机电君