首页/文章/ 详情

SCI一区开源代码推荐 | 分类器引导的神经盲解卷积

3月前浏览4488

SCI一区开源代码推荐 | 分类器引导的神经盲解卷积:用于噪声条件下轴承故障诊断的物理信息引导的去噪模块

本期受文章作者投稿给大家分享一篇SCI一区的开源代码文章。如果有故障诊断相关方向研究人员希望宣传自己研究成果欢迎大家在公众 号后台与小编联系投稿,大家一起交流学习。

本文提出了一种分类器引导的盲解卷积(Classifie-guided neural BD, ClassBD),旨在实现基于BD的特征提取与基于深度学习的故障诊断的协同学习。希望对大家的学习有所帮助,也同时希望大家可以多多引用


论文基本信息

论文题目Classifier-guided neural blinddeconvolution: A physics-informed denoising module for bearing fault diagnosisunder noisy conditions
论文期刊Mechanical Systems and Signal Processing (SCI一区Top)
论文日期2024.07
论文链接https://doi.org/10.1016/j.ymssp.2024.111750
作者Jing-Xiao Liao1,2, Chao He3,4,Jipu Li1, Jinwei Sun2, Shiping Zhang2*, XiaogeZhang1*
机构

1.Department of Industrial and SystemsEngineering, The Hong Kong Polytechnic University, Hong Kong, SpecialAdministrative Region of China

2.School of Instrumentation Science andEngineering, Harbin Institute of Technology, Harbin, China

3.School of Mechanical, Electronic andControl Engineering, Beijing Jiaotong University, Beijing, China

4.State Key Laboratory of Advanced RailAutonomous Operation, Beijing Jiaotong University, Beijing, China  
通讯作者邮箱xiaoge.zhang@polyu.edu.hk
作者简介:廖敬骁,现为香港理工大学工业及系统工程学系和哈尔滨工业大学仪器科学与工程学院双学位博士生,在IEEE TII、MSSP、IEEE JBHI、IEEE TAI、IEEE TIM等期刊上发表了多篇学术论文,研究方向为深度学习理论,非平稳信号处理,多项式神经网络,轴承故障诊断。

通讯作者张晓革,香港理工大学工业及系统工程学系助理教授,主要从事智能系统可靠性与安全评估以及风险管理相关方面的研究工作,相关研究成果应用于物流运输、航空交通管理等领域。曾于2016年8月至12月在美国国家航空航天局艾姆斯研究中心(NASA Ames Research Center)担任研究工程师,于2020年3至2021年8月在美国联邦快递总部担任高级运筹学分析师,并获得Bravo Zulu Award。主持香港大学教育资助委员会(RGC)杰出青年学者计划基金一项,在NatureCommunications、MSSP、RESS、IEEE TII、IEEE Trans. on Reliability等国际知名期刊发表高水平学术论文70余篇,论文总引用量达到3200余次,曾获得省部级二等奖一项,国家优秀自费留学生奖学金等荣誉。

通讯作者张世平,哈尔滨工业大学仪器科学与工程学院副教授,精密电测技术与仪器研究所所长,主要从事传感技术、信号检测及处理,以及人工智能等方向研究,先后主持承担和参与国家自然基金,以及航天、石油、电网等领域的多项科研项目。

目录

1 摘要
2 盲解卷积
3 方法
    3.1 时域二阶卷积滤波器
    3.2 频域线性滤波及包络谱
    3.3 基于不确定性感知加权的集成
4 主要实验结果
5 结论

1 摘要

盲解卷积(Blind Deconvolution, BD)是一种有效的非平稳信号处理方法,能够从强背景噪声下的振动信号中提取轴承故障特有的特征。尽管BD在自适应性和数学可解释性上已经获得了显著的成果,但依然存在一个重大的挑战:如何有效地将BD与故障诊断分类器结合?因为传统的BD方法仅设计用于特征提取,具有独立的优化方法和目标函数。而当BD与下游的深度学习分类器结合时,不同的学习目标很容易产生冲突。为了解决这一问题,本文提出了一种分类器引导的盲解卷积(Classifie-guided neural BD, ClassBD),旨在实现基于BD的特征提取与基于深度学习的故障诊断的协同学习。
为此,本文首先开发了一种基于时频域的神经BD(Neural BD),构造神经网络实现了传统BD的功能,从而促进了BD与深度学习分类器的无缝集成,实现模型参数的协同优化。Neural BD中集成了两个滤波器一是在时域中使用的二阶神经滤波器,利用二阶卷积神经网络(Quadratic Neural Network)提取周期性脉冲;二是在频域中设计了一个由全连接神经网络组成的线性神经滤波器,用于增强离散频率成分。
其次,构建了一个基于深度学习分类器的统一框架,以引导BD滤波器的学习。
最后,设计了一个物理信息引导的损失函数,该函数结合了峭度(Kurtosis)、𝑙2/𝑙4范数和交叉熵损失,以协同优化BD滤波器和深度学习分类器。通过这种方式,在强噪声环境中,故障标签被充分利用来指导BD提取区分类别的特征
这是首次成功将BD方法应用于轴承故障诊断。三个不同数据集的实验结果表明ClassBD在噪声条件下的表现优于其他最先进的方法。
关键词盲解卷积;二次卷积神经滤波;频率线性神经滤波器;分类器引导信号处理;轴承故障诊断

2 盲解卷积

在非平稳信号处理领域,解卷积用于逆转线性时不变系统对输入信号进行卷积操作的影响。这种技术的一个特殊表示,被称为盲解卷积或更准确地说是无监督反卷积,旨在当未知信号传输系统和输入信号时,利用输出信号来恢复输入信号[1]。在旋转机械振动信号的背景下,测量信号可以解释为周期性故障脉冲从故障源到传感器的传输路径函数之间的卷积的结果[2]。数学上,给定被测信号  、故障源信号  和加性噪声  (如高斯噪声、拉普拉斯噪声等),信号传输过程可以定义如下:
  
其中,  和  表示传输函数,  表示卷积操作。
BD的目标是从测量信号中提取与故障相关的特征(周期性脉冲)。为此,它通过构建滤波器  来恢复更接近故障源的信号  :
  
上述公式表示的是信号传输过程的简化描述,并未明确定义为线性系统。根据[2],噪声  包含各种噪声和干扰成分,这些成分可能包括由机械旋转和齿轮啮合引起的周期性谐波、外部冲击导致的随机脉冲成分以及背景噪声。这些噪声通过不同的传输路径到达传感器
然而,由于机械系统的复杂性,准确估计传输函数及其频率响应通常是不现实的。这个挑战因不可预测的噪声的存在而变得更加复杂。因此,在缺乏先验信息(如准确的故障脉冲周期)的情况下,BD 被认为是一个病态问题。鉴于故障特征的非平稳性和周期性提出了各种稀疏性指标作为优化目标函数[3-5] 。一个典型的例子是峭度[6],它在MED中被用作目标函数[7]:
  
其中  表示BD滤波器的输出,其长度等于输入    
本质上,峭度是一种评估数据分布的统计量。峭度值的增加表明数据偏离标准正态分布[6]。直观上,当故障发生时,振动信号中会出现周期性脉冲,振动信号的峭度值由于更多峰值(离群值)的存在而增加。因此,最大化峰度驱动自适应滤波器恢复更多脉冲。优化目标定义如下:
  

目前已经开发了几种有效的BD优化方法,包括矩阵运算[7-8]、粒子群优化 [9] 和反向传播算法[10-11]。BD的性能也会受到优化方法影响。因此,近年来,针对BD方法的研究包括提出更通用的刻画目标信号本质特征的目标函数,设计新的滤波器及初始化技术,开发更强大的优化方法等[2]。

3 方法

所提出的框架,如图1所示,主要由两个 BD 滤波器组成,即时域二阶卷积滤波器频域线性滤波器。这些滤波器作为即插即用的去噪模块,执行与传统 BD方法相同的功能,以确保输出与输入维度一致。
1.时域滤波器的特点是由两个对称的二次卷积神经网络(QCNN)层组成。一个16通道的QCNN用于滤波输入信号(1×2048),然后通过一个反QCNN层将16个通道融合为一个,以恢复输入信号。
2.频域滤波器首先使用快速傅里叶变换(FFT)将时域信号转换为频域。随后,使用一个线性神经层对信号的频域进行滤波,并通过逆傅里叶变换(IFFT)恢复时域信号。此外,还设计了一个包络谱(ES)中的目标函数用于优化。

图1 神经盲解卷积滤波器


Neural BD滤波器后可以直接使用1D深度学习分类器,如ResNet、CNN或Transformer等,来识别故障类型。本文采用了WDCNN[12]作为分类器。最后,设计了一个物理信息损失函数作为优化目标来指导模型的学习。该函数包括交叉熵损失  、峭度    范数      分别用于计算时域滤波器和频域滤波器输出的统计特性。

3.1 时域二阶卷积滤波器

二阶神经网络(quadratic convolutional neural networks, QCNN)是时域卷积滤波器的关键组成部分。二阶神经网络将传统的线性神经元替换为二阶神经神经元,以实现更强的表示能力。本文使用Fan等人提出的二阶神经元表达式[13]:

  
其中为卷积操作,  为非线性激活函数,  ,   为权重参数。本文进一步证明了二阶网络对循环特征提取的优越性。

相比于传统神经网络,二阶神经网络模型参数数量非线性乘法运算显著增加。因此,需要计算难度大幅增加。先前的研究表明,传统的初始化技术会显著阻碍二次网络的收敛[14-15]。为了解决这个问题,设计了一种专门的策略来初始化二次网络:


其中,  表示均值为零的高斯分布,  表示范围在  内的均匀分布,  表示  的核大小。

分组初始化策略,也称为 ReLinear[14] ,迫使 QCNN 从近似线性神经元开始训练。高阶权重的初始值被设为零,以便其缓慢增长。这一策略通过避免梯度爆炸,大大提高了二次网络在训练过程中的稳定性。本文采用两个 QCNN 层来形成对称结构,模仿多层反卷积滤波器。第一个 QCNN 层将输入映射到16个通道,而第二个QCNN层将这16个通道合并为一个输出。输出的维度被刻意保持与输入相同。这一操作有效地使用卷积神经网络实现了传统的BD滤波器。最后,由于QCNN作为时域BD使用,可以使用峭度作为时域BD目标函数:

  
3.2 频域线性滤波及包络谱损失函数
频域滤波器作为辅助模块,直接处理信号频域。其主要思想是通过傅里叶变换,并利用神经网络作为频域内的滤波器。这种方法通常被称为傅里叶神经网络[16-17]。设通过时域滤波器的信号为  ,应用FFT  将信号转换到频域:
  

根据卷积定理,两个时域数据的卷积等价于其傅里叶变换域中的内积。因此,频域滤波器采用线性操作在频域内滤波信号,从而替代时域中的卷积操作。即使用全连接神经网络来实现频域滤波器:

  

应用IFFT将信号恢复到时域:

  

其次,还需要为频域滤波器设计一个目标函数。先前的研究提出了一些频域BD目标函数,如包络谱𝑙1/𝑙2范数[18] 、包络谱峰度(ESK)[19]和𝑙𝑝/𝑙𝑞范数[4] 。这些方法的基本概念是增强频域信号的稀疏性,从而有效减轻噪声频率成分的影响。本文采用这一思路,基于包络谱(ES)设计目标函数。

目标函数设计为衡量信号包络谱的稀疏性指标(包络谱的𝑙2/𝑙4范数):

  
3.3 基于不确定性感知加权的集成优化

故障诊断任务通常需要一个深度学习分类器,此时损失函数演变为联合损失:

  

其中,  表示交叉熵损失。

此时,优化ClassBD被转换为一个多任务学习问题[20]。在多任务学习的背景下,一个关键挑战在于平衡不同损失项。为了解决这个问题,采用了不确定性感知加权损失,以自动平衡每个损失函数对学习问题的重要性[21] 。假设所有任务都有任务相关或同方差的不确定性,所有任务的损失函数都受到高斯噪声的影响,则似然函数可以定义为:

  
其中  表示噪声的方差。

联合损失可以转换为:

  
𝜎的值越大,对应损失的贡献就越小,反之亦然。每个𝜎被视为一个可学习的参数,其初始值设定为−0.5,见[21-22]。在训练过程中,尺度由最后一项log𝜎调节,如果𝜎过大将受到惩罚。尽管这种策略无法实现完美的平衡,但它可以让每个损失平稳下降,防止快速收敛到零。

4 主要实验结果

表1 PU数据集强噪声分类结果

表2 JNU数据集强噪声分类结果

表3 PU "N09M07F10" 数据集不同类型噪声下分类结果

表4 PU数据集基于ClassBD使用不同分类器的分类结果

图2 TSNE可视化结果

图3 BD方法特征提取结果(增强包络谱)

图4 传统神经网络和二阶神经网络特征提取结果

5 结论

本研究提出了一种新颖的方法,称为ClassBD,用于在强噪声条件下进行轴承故障诊断。ClassBD由级联的时域和频域Neural BD滤波器组成,随后连接一个深度学习分类器。具体来说,时域BD滤波器采用二次卷积神经网络(QCNN),在数学上证明了其在时域提取周期性脉冲特征的优越能力。频域BD滤波器包括一个全连接线性滤波器,补充了神经网络对频域的提取能力。此外,ClassBD直接集成一个深度学习分类器实现了端到端的故障诊断。设计了一个物理信息损失函数,该损失函数由峭度、    范数和交叉熵损失组成,以促进分类器引导BD学习。这个统一的框架将传统的无监督BD转变为监督学习,并由于保留了传统BD操作而提供了解释性。最后,三个公开和自测数据集上进行的综合实验表明,ClassBD优于其他最先进的方法。ClassBD是第一个可以直接应用于分类的BD方法,表现出良好的抗噪性和可移植性。因此,ClassBD在未来研究中具有进一步推广到其他困难任务(如跨域和小样本问题)的巨大潜力。

编辑:李正平

校核:陈凯歌、赵栓栓曹希铭、赵学功、白亮、陈少华

该文资料(BD)搜集自网络,仅用作学术分享,不做商业用途,若侵权,后台联系小编进行删除。


来源:故障诊断与python学习
MechanicalSystem振动非线性旋转机械通用航空航天pythonUM声学理论电机爆炸数字孪生人工智能
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-08-07
最近编辑:3月前
故障诊断与python学习
硕士 签名征集中
获赞 70粉丝 66文章 143课程 0
点赞
收藏
作者推荐

故障诊断干货分享 | 为什么监测机械振动很重要?

监测机械振动并利用你获得的信息会为你节省金钱! 这可能吗?我们将在本章回答这个问题。阅读本章后你将: 理解机械振动这个术语了解机械振动的一些常见原因解释监测机械振动的理由 理解监测机械振动怎样节省资金注:该文转载自:http://www.bpdm.com.cn/Example/Index?menuId=27,仅供学习,若侵删。该文来自普迪美科技(北京)有限公司。普迪美科技是一家集研发生产、国际合作、市场营销和技术服务为一体的公司,为客户提供设备状态监测解决方案,致力于创造预测维修的价值。目录1 什么是机械振动2 什么引起机械振动 2.1 往复力 2.2 松动 2.3 共振3 为什么监测机械振动 3.1 严重的机械损害 3.2 高功率消耗 3.3 机械的不可用 3.3 运输延迟 3.4 未完成货物的堆积 3.6 不必要的维护 3.7 质量问题 3.8 糟糕的公司形象 3.9 职业危机4 总结1 什么是机械振动我们大部分人都很熟悉振动,一个振动的物体会前后运动,物体处于振荡状态。在我们的日常生活中振动实例处处可见,一个运动的钟摆处于振动状态,被拨动的吉他弦产生振动,行驶在颠簸路面的汽车不断振动,地质活动引发大面积的振动形成地震。我们可通过各种方式感受物体的振动,我们能接触一个振动物体并感受其振动,我们也可看到一个振动体的前后移动,有时振动可以产生能听到的声音或能感觉到的热。在工厂有一种振动是我们关心的:机械振动。 什么是机械振动?机械振动就是机械或机械部件的前后运动,一些部件前后运动或摆动就是在振动。 机械振动可以呈现出各种形式,一个机械部件可能产生大位移或小位移的振动,快或慢的振动,可感知或不可感知的热或声音的振动。机械振动可以被设计来实现一定的功能,除此之外,其他情况下机械振动可能是非期望产生的并导致机械损害。多数情况机械振动是非人为原因产生的并不合需要的,本章是对非期望的机械振动监测的介绍,下面是一些非期望的机械振动的示例:2 引起机械振动的原因是什么几乎所有的机械振动是由于下面的一个或多个原因引起: a) 往复作用力b) 松动c) 共振2.1 往复作用力想象一艘船停泊在海湾中,波浪正拍打着船的两边,只要波浪在船上持续作用,我们能够期待船将会摇动。船摇动因为波浪对其施加一个往复的力。许多机械振动都因类似于那种引起船摇动的往复力而起,象这样的往复力作用于机器部件并且引起机器振动。引起机械振动的往复力来自哪里呢? 在机器中往复力的产生多因不平衡旋转、不对中、磨损或对机械部件的不合理驱动。下面显示的是这四种类型往复力的例子。2.2 松动机械零件的松动引起机械振动。如果零件变得松动,那些原本可以容忍的正常振动可能变得不能约束并且过大。2.3 共振想象一个孩子在一秋千自由摇摆,即,没有别人推他且自己也不用力。如果我们近距离观察该运动,我们将看到孩子以某一特殊速率摇摆。例如,我们将看到秋千带着孩子以大约3秒完成一个摇摆周期。孩子摇摆的速率实际上取决于摇摆系统的物理特性,更多取决于孩子的物理特性,即体重。当坐在这个特别秋千上孩子就会以该速率摇摆,它是孩子在这个秋千上最自然的摇摆速率。要改变该速率,唯一的方法是通过站起来,改变姿势,用脚摩擦地面等来改变自然摇摆。机器也倾向于以某个速率振荡。机器倾向于的振荡速率被称为固有振动速率。机器的固有振动速率对机器来说是最自然的机器振动速率,即以该速率机器更易振动,一台机器通过它本身自由振动更倾向于以固有速率振动。 许多机器不止有一个固有振动速率,例如,一台设备包含两个具有不同固有振动速率的子结构,将会展示至少两个固有振动速率。总之,机器越复杂,它将有更多个固有振动速率。现在让我们再回到孩子荡秋千这一例子,如果我们不停地推动孩子来帮助秋千运动,我们便可以期待秋千将越摆越高。然而,如果我们以合适的节奏推动秋千的话,总是能使秋千只会越来越高;如果秋千上升我们却向下推,不要期待它会合理的摇摆。要使它摇的越来越高,我们推动的节奏就应该和其固有振动速率相一致,例如,我们可以每隔一段时间推一次,或着每次转变方向时推动,他会达到最高点。仅仅通过以其自然或固有速率来推动孩子,我们便可使其摇摆的越来越高。如果一台机器被一往复力推动,且该力的节奏与机器的固有振动速率相匹配将会发生什么呢?一个类似的情形将会发生——机器将会振动越来越强烈,因为该往复力激励机器以其自然自振速率振动。这台机器将不遗余力并超限振动。不仅因为他将以固有振动速率振动而且还受外力驱使振动。一台机器处于这种状况,我们便说它处于共振。引起共振的往复力可能很小,并且可能来自于一个良好的机器部件的运动,如此小的往复力不会引起大问题,除非引起共振。共振总是应当被避免的,因为它引起快速和严重的损害。例如,一座桥的坍塌,仅仅因为其固有振动速率被士兵过桥的一致步伐节奏所激励。3 为什么要监测机械振动要做好机器振动监测这项工作并且完全获益,我们必须理解对这个问题的答案。监测一台机器的振动特征能让我们理解关于这台机器的“健康”状态,我们能使用这些信息来探察那些可能正在发生的问题。为什么要关心机器的状态?为什么不持续运行该机器直至它损坏再修理它?如果一台机器可以随便使用,我们使用它直至损坏是可以接受的。但是许多机器的价值决定不能随便处理它们。如果我们对这些机器进行有规律的监测,我们将发现一些问题可能正在发展,并且能纠正它们既使这些问题已经产生。相反,如果对那些我们不期望的振动不进行监测,机器很可能会被一直使用直至损坏。因为监测机械振动能发现潜在的破坏性振动,因而我们能阻止问题发生,这样会为我们节省大量时间,金钱和避免损失。下面我们讨论一些常见问题,这些问题可通过机械振动监测来避免。当机器本身的价值很大并且远远超过机械振动监测项目的价值时,这些问题是值得避免的。3.1 严重的机械损害机械振动如果在足够早期没有进行探测,通常将导致严重的机械损害,这些损害需支付高额修理费甚至是整台机器的全部替换。然而,如果能有规律的监测这些机器的状况,在早期阶段潜在的问题就能被发现并被解决掉,在该阶段机器的修理是简单、快速和廉价的。这类似于我们的健康,经常看医生能早发现问题并可以避免大额的重病康复费用。3.2 高功率消耗一台振动的设备会消耗更多能量,与功率需求执行机器的目的功能一样,附加功率也需求支持振动。如果机器被定期监测和维修这个问题可以被最小化。3.3 机械的不可用因为一台未监测设备更可能损坏,所以它经常更易失去效用。然而,拥有和运行机器的价值常常是由于其能够有效高效率地处理物质,或者其能够有效地将原材料转化成金钱。一台机器应能够始终可用来证明其投资,定期的监测能确保一台机器始终可用。3.4 交货迟延因为一个没有处于监测状态下的机器更可能损坏,因此也可能导致货物发货的耽误,客户不得不等待,并且也耽搁了支付。客户也可能取消定单并拒绝和我们做生意。3.5 未完成货物的堆积因为一台未受监测的机器是容易损坏的,它是经常不可用的,制造中的产品在机器的入料口堆积,这导致不必要的损耗 —— 等待的货物冒着损坏的风险,房屋面积和资本的占用。3.6 不必要的维护为了确保机器始终处于良好的状态,一些公司不考虑机器是否正处于故障状态便按照预先决定的计划停机调整并更换零件,因此,经常不必要地停机更换那些仍然状况良好的零件以及纠正不存在的问题。如果能经常监测机器并仅于必要时修理,这样的浪费是可以避免的。3.7 质量问题有时机器虽然表面上好象机能正常却可能正处于不正常状态,这是一种危险状况,如果不早处理,这个问题可能导致生产低质量的产品,大规模产量损失,返工成本,更糟的是被愤怒的客户返回保修。经常被监测的机器很少会发生这样的问题。3.8 糟糕的公司形象我们注意到上面提到的那些没有正常监测的机器能够导致交货迟延和低质量的产品。单单一个偶然的交货失误或产品的缺陷便足以严重玷污或者终结与客户的关系,一个与交货延误或低质量相联系的坏公司形象是公司的大事,应该避免。相对来说成本较低的机械振动监测,能够保护我们的客户关系和相关利益。3.9 职业病由于振动机械的引起噪声和振动,他们经常引起职业病和人们的不适,而人们的不适又导致公司的损失,因为工人感到不适时会影响生产积极性。意外的机械停机导致人们无事可做,使生产策划者受挫。4 总结在本章里我们描述了机械振动,并讨论了通过对其采取规范的监测所带来的利益。简言之,机械振动是机械或机械部件的前后运动,并一般由作用在机械上的往复力,松动的零件以及机械上的共振引起。我们辨明了规律地进行振动监测的理由和不这样做的结果。通过规范地测一台机器的特征,当问题产生时我们能检测并纠正它。在早期纠正机械问题,我们避免许多令人不愉快并且代价昂贵的问题,有些问题还会把客户卷入其中。不监测机器振动的代价远远超过进行机械监测项目的花费。 客官,球球再点个广告,再走吧~ 来源:故障诊断与python学习

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈