清华大学权威顶刊丨金属激光粉末床熔融增材制造的激光熔化机理
在过去的三十多年中,金属增材制造技术(俗称金属3D打印)快速发展,正深刻变革着航空航天、汽车、国防、化工、医药、能源等领域。激光粉末床熔融增材制造(亦被称作激光选区熔化)是其中最广泛使用的技术之一。然而,迄今为止,学术界对激光-物质相互作用的认识还不够深刻,对激光熔化模式的定义仍然很模糊、尚未达成共识,这使得制造无缺陷、微观结构可控的构件仍有困难,限制了激光粉末床熔融增材制造行业的进一步突破。图1 金属激光增材制造中的熔化模式(a)熔化模式定义的物理基础;(b)-(c)基于静态剖析的定义;(d)基于动态过程的定义关注我们, 万物皆可3D打印 清华大学机械工程系研究人员在国际物理学界权威期刊《现代物理评论》(Reviews of Modern Physics)上发表了关于金属激光增材制造激光熔化模式的综述论文(Laser melting modes in metal powder bed fusion additive manufacturing)。图2 金属粉末激光熔化物理过程作者首先阐述了金属激光粉末床熔融增材制造中的一般物理过程,着重强调了两个关键耦合现象:熔化和汽化,匙孔前壁液态突出物和匙孔失稳。这些物理现象驱动了熔池和匙孔的形貌演化,是激光熔化模式定义的基石。图3 基于打印件金相分析熔化模式图4 基于过程可视化研究熔化模式之后,根据熔池和匙孔的表征测量方法,作者将激光熔化模式分为两类(图1)。第一类基于静态的事后金相剖析,而第二类基于原位、动态的过程可视化。相比而言,基于过程可视化的定义更加严谨、更具物理意义,为金属激光粉末床熔融增材制造提供了新的生产指导原则和新的研究方向。 图5 多信息转录与知识转移作者强调了匙孔的重要性,并指出基于稳态匙孔熔化模式的增材制造更加高效、可持续、稳健。而这个设想的实现将依赖于多物理模型、多信息转录(如图5)以及跨平台跨尺度过程计量的发展。图6 金属激光粉末床熔合工艺图示意图图7 激光熔化的同步x射线成像论文引用:Cang Zhao*, Bo Shi, Shuailei Chen, Dong Du, Tao Sun, Brian J. Simonds, Kamel Fezzaa, and Anthony D. Rollett, Laser melting modes in metal powder bed fusion additive manufacturing. Reviews of Modern Physics 94, 045002 (2022).doi: 10.1103/RevModPhys.94.045002清华大学机械工程系助理教授赵沧为该论文的独立第一作者和独立通讯作者。作者还包括清华大学机械工程系都东教授、2021级博士研究生师博、2019级本科生陈帅雷,美国弗吉尼亚大学孙韬副教授、国家标准与技术研究院布莱恩·西蒙茨(Brian Simonds)研究员、阿贡国家实验室卡迈勒·费扎(Kamel Fezzaa)研究员和卡内基梅隆大学安东尼·罗莱特(Anthony Rollett)教授。该项工作得到了国家自然科学基金、清华大学-帝国理工学院科研创新种子基金等经费的资助。《现代物理评论》创刊于1929年,是国际物理学界最权威的综述性期刊,每年发表三十至四十篇学术论文,包括诺贝尔物理学奖演讲。该期刊旨在对当今物理研究的重大热点问题作历史总结、原理阐述、现状分析和趋向预测。此论文是清华大学在该期刊首篇以第一完成单位、唯一通讯单位发表的论文,是中国制造领域和冶金领域在该期刊发表的首篇论文,也是国际增材制造领域在该期刊发表的首篇论文。声明: 仅供学习交流如涉版权问题请留言 来源:增材制造硕博联盟