粘聚区模型通过一个广义的粘聚牵引力将粘结体保持在一起,从而模拟胶粘剂的粘接。胶粘剂层对载荷的响应由牵引-分离曲线描述。图1显示了一个双线性牵引-分离关系的例子。曲线分为两个部分:弹性区域和损伤演化区域。这两个区域分别由一组胶粘剂材料属性描述,图2总结了这些属性。
图1:双线性牵引-分离曲线,具有线性弹性行为和损伤开始后的线性损伤。
图2:构建粘聚区材料数据卡(MDC)所需的材料属性和测试。模型假设胶粘剂是各向同性的,且在两种剪切方向(模式II和模式III)上的材料属性相同。
粘合材料性能
在弹性区域,材料的响应由归一化拉伸模量和泊松比 定义。这里 tA 是粘合层的厚度。这些性能随后用于计算归一化剪切模量
损伤起始发生是牵引分离关系的峰值,标志着材料响应退化的开始。损伤起始准则通常定义为 I 型和 II 型模式下的极限拉伸和剪切强度
。极限拉伸强度 是通过对接接头测试测量的,而剪切强度则通过厚层剪切测试测量。
混合模式损伤起始可以使用二次名义应力准则进行估算:
损伤演化描述了在损伤初始后材料刚度的退化过程。损伤演化区域由损伤参数 (D) 和临界断裂能量定义。在损伤初始点,损伤参数 D 的初始值为 0,并在完全失效时单调增加到 1。
这里是未损伤的牵引向量分量。临界断裂能量是牵引-分离曲线下的面积(图1)。通常使用锥形双悬臂梁(TDCB)测试和端部切口弯曲(ENF)测试分别测量模式 I 和模式 II 的临界断裂能量(图3)。临界断裂能量可以使用 Irwin-Kies 方程计算:
这里,F表示平均峰值力,w表示试样宽度,dC/da表示试样柔度C相对于裂纹长度a的导数。可以使用Benzeggagh-Kenane (B-K) 法则来估算混合模式的断裂行为。
图3:TDCB和ENF测试装置及结果。裂纹尖端的位置通过3M专有的裂纹尖端位置跟踪算法测量
材料数据卡
可以将粘合剂的材料性能输入到材料数据卡(MDC)中,并直接导入FEA软件。图4展示了Abaqus的一个粘合区材料数据卡示例。一般来说,材料性能取决于应变速率和接头几何形状,尤其是粘接线的厚度。因此,应在预期使用条件下测量材料性能。
图4:粘结材料在Abaqus材料卡
测试试样验证
材料模型必须通过实验验证,以确保模型能够以足够的准确性代表真实材料的行为。验证应在试样级别、子组件级别、组件级别和最终产品级别进行。图5显示了使用T剥离和单搭接剪切测试进行的试样级别验证。图6显示了使用90°双搭接剪切测试进行的验证,该测试导致复杂的应力分布和混合模式行为。3M客户可以使用这些由3M提供的测试试样验证,在他们自己的设计中验证3M™结构胶粘剂。
图5:使用T型剥离测试和单搭接剪切测试对黏结区材料模型进行验证。
图6:通过90°双搭接剪切试验对混合模式粘合模型进行验证。
结论
3M能为客户提供经过验证的MDC能够使胶粘剂性能和接头设计的评估更加准确和迅速。