交叉偶极子天线已被广泛开发用于当前和未来的无线通信系统。它们可以产生各向同性、全向、双极化 (DP) 和圆偏振 (CP) 辐射。此外,通过集成各种初级辐射元件,它们适用于单频段、多频段和宽带操作。
[1] S. X. Ta, I. Park, and R. W. Ziolkowski, “Crossed Dipole Antennas: A review,” IEEE Antennas and Propagation Magazine, vol. 57, no. 5, pp. 107–122, Oct. 2015, doi: 10.1109/MAP.2015.2470680.
As shown below👇
交叉偶极子天线的进展
交叉偶极子是一种常见的天线,其应用从射频 (RF) 到毫米波频率范围。
其始于 1930 年代。第一个交叉偶极子天线是由Brown以“turnstile天线”的名义开发的。
在1940年代,“superturnstile”天线被开发出来,与原始设计相比,具有更宽的阻抗带宽。
1961年,开发了一种新型的交叉偶极子天线,该天线使用单一馈源,用于CP辐射。
在 2000 年代,交叉偶极子开始由两个独立的端口馈电,它们之间必须有 90° 的相位差以产生 DP 辐射。
如今,这种天线类型用于许多无线通信系统,包括广播服务、卫星通信、移动通信、全球导航卫星系统 (GNSS)、射频识别 (RFID)、无线电力传输 、无线局域网 (WLAN) 、无线个人局域网和全球微波接入互操作性(WiMAX)。
交叉偶极子的结构演变
第一个交叉偶极子天线的开发重点是作为一种新的超高频(UHF)辐射系统,该系统通过在所有方向上将能量均匀地集中在水平面上来节省能量。该turnstile antenna的单个元件是交叉偶极子的基本设计,它由一组两个半波长偶极子组成,它们彼此成直角排列,电流大小相等,是同相正交的。
从那时起,对传统旋转门天线的替代修改实现了更宽的阻抗带宽、外形小型化和易于制造。
随着无线通信的发展,许多应用都需要天线以显着的前后比辐射单向模式,以确保传播信道的高安全性和效率。因此,交叉偶极子通常配备一个反射器,以产生具有圆偏振或双偏振的所需单向图案。
大多数天线都需要双馈电结构,这通常会使天线的设计和制造复杂化。Bolster从理论和实验上证明,如果偶极子的长度使得它们的输入导纳的实部相等,并且其输入导纳的相位角相差90°,则并联的单馈交叉偶极子可以产生CP辐射。基于这些条件,已经报道了许多单馈CP交叉偶极子天线。
未来对交叉偶极子天线的研究将根据其最近的发展方向进行重新定位,包括简单的馈电结构、辐射方向图控制、轮廓小型化以及带宽增强。为了简化馈电结构,开发了单馈天线。尽管如此,要实现宽带和宽波束CP辐射,仍有大量的研究需要做。为了实现型材小型化,交叉偶极子辐射器已悬挂在AM C表面上方,而不是金属反射器。但是,AMC带宽的改进需要进一步考虑。此外,还需要对额外共振现象及其相应的CP辐射特征进行严格的研究。