首页/文章/ 详情

阵列天线贴片间的解耦的方法汇总

3月前浏览4095



为了减轻两个贴片天线之间的相互耦合,多年来进行了广泛的研究。这里总结了一些常用的方法。

摘要



   

减少贴片天线间互耦的技术主要包括减少表面波耦合、引入带阻响应、改变耦合模式、网络解耦以及利用自然场特性等方法。每种方法都有其适用场景和优缺点,需要根据具体的应用需求和天线布局来选择合适的技术。





解耦技术

As shown below👇


解耦方法介绍

这些技术可以大致分为几类:


1、减少表面波耦合:

当贴片天线相距较远时,表面波是互耦的主要因素。通过设计来减少表面波的传播,可以有效提高天线间的隔离度。这种方法适用于天线间距相对较大的情况。

参考文献[1]-[5]


2、引入带阻响应:

在需要的频段内,通过在天线之间引入带阻元件(如谐振器、槽结构等),可以产生带阻响应,从而减少该频段的互耦。这种方法不需要额外的空间,但设计复杂度较高。

参考文献[6]-[10]


3、改变耦合模式:

使用特定结构(如近场谐振器、极化转换隔离器等)来改变天线之间的耦合模式,从而降低互耦。这种方法可能需要特定的设计来匹配天线的特性和工作频段。

参考文献[11]-[12]


4、网络解耦:

通过引入额外的路径来抵消相互耦合的场,从而达到解耦的目的。这种方法包括使用耦合器、移相器等网络结构,可以有效提高隔离度,但可能增加系统的复杂性和成本。

参考文献[13]-[17]


5、利用自然场特性:

研究贴片天线的自然场特性,通过精心设计天线结构和排列方式,可以在不使用额外解耦结构的情况下实现天线间的隔离。这种方法简单有效,特别适用于天线间距较小、难以实施复杂解耦结构的场景。

参考文献[18]-[24]






参考文献


[1] E. Rajo-Iglesias, Ó. Quevedo-Teruel and L. Inclan-Sanchez, "Mutual Coupling Reduction in Patch Antenna Arrays by Using a Planar EBG Structure and a Multilayer Dielectric Substrate," in IEEE Transactions on Antennas and Propagation, vol. 56, no. 6, pp. 1648-1655, June 2008, doi: 10.1109/TAP.2008.923306.


[2] Fan Yang and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications," in IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2936-2946, Oct. 2003, doi: 10.1109/TAP.2003.817983.


[3] S. Ghosal, A. De, R. M. Shubair and A. Chakrabarty, "Analysis and Reduction of Mutual Coupling in a Microstrip Array With a Magneto-Electric Structure," in IEEE Transactions on Electromagnetic Compatibility, vol. 63, no. 5, pp. 1376-1383, Oct. 2021, doi: 10.1109/TEMC.2020.3041662.


[4] A. Askarian, J. Yao, Z. Lu and K. Wu, "Surface-Wave Control Technique for Mutual Coupling Mitigation in Array Antenna," in IEEE Microwave and Wireless Components Letters, vol. 32, no. 6, pp. 623-626, June 2022, doi: 10.1109/LMWC.2021.3139196.


[5] Jong-Gwan Yook and L. P. B. Katehi, "Micromachined microstrip patch antenna with controlled mutual coupling and surface waves," in IEEE Transactions on Antennas and Propagation, vol. 49, no. 9, pp. 1282-1289, Sept. 2001, doi: 10.1109/8.947019.


[6] K. S. Vishvaksenan, K. Mithra, R. Kalaiarasan and K. S. Raj, "Mutual Coupling Reduction in Microstrip Patch Antenna Arrays Using Parallel Coupled-Line Resonators," in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2146-2149, 2017, doi: 10.1109/LAWP.2017.2700521.


[7] A. Habashi, J. Nourinia and C. Ghobadi, "Mutual Coupling Reduction Between Very Closely Spaced Patch Antennas Using Low-Profile Folded Split-Ring Resonators (FSRRs)," in IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 862-865, 2011, doi: 10.1109/LAWP.2011.2165931.


[8] C. -Y. Chiu, C. -H. Cheng, R. D. Murch and C. R. Rowell, "Reduction of Mutual Coupling Between Closely-Packed Antenna Elements," in IEEE Transactions on Antennas and Propagation, vol. 55, no. 6, pp. 1732-1738, June 2007, doi: 10.1109/TAP.2007.898618.


[9] J. OuYang, F. Yang and Z. M. Wang, "Reducing Mutual Coupling of Closely Spaced Microstrip MIMO Antennas for WLAN Application," in IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 310-313, 2011, doi: 10.1109/LAWP.2011.2140310.


[10] S. Zhang, B. K. Lau, Y. Tan, Z. Ying and S. He, "Mutual Coupling Reduction of Two PIFAs With a T-Shape Slot Impedance Transformer for MIMO Mobile Terminals," in IEEE Transactions on Antennas and Propagation, vol. 60, no. 3, pp. 1521-1531, March 2012, doi: 10.1109/TAP.2011.2180329.


[11] M. Li, B. G. Zhong and S. W. Cheung, "Isolation Enhancement for MIMO Patch Antennas Using Near-Field Resonators as Coupling-Mode Transducers," in IEEE Transactions on Antennas and Propagation, vol. 67, no. 2, pp. 755-764, Feb. 2019, doi: 10.1109/TAP.2018.2880048.


[12] Y. -F. Cheng, X. Ding, W. Shao and B. -Z. Wang, "Reduction of Mutual Coupling Between Patch Antennas Using a Polarization-Conversion Isolator," in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1257-1260, 2017, doi: 10.1109/LAWP.2016.2631621.


[13] J. Andersen and H. Rasmussen, "Decoupling and descattering networks for antennas," in IEEE Transactions on Antennas and Propagation, vol. 24, no. 6, pp. 841-846, November 1976, doi: 10.1109/TAP.1976.1141437.


[14] T. Pei, L. Zhu, J. Wang and W. Wu, "A Low-Profile Decoupling Structure for Mutual Coupling Suppression in MIMO Patch Antenna," in IEEE Transactions on Antennas and Propagation, vol. 69, no. 10, pp. 6145-6153, Oct. 2021, doi: 10.1109/TAP.2021.3098565.


[15] Y. -M. Zhang, S. Zhang, J. -L. Li and G. F. Pedersen, "A Wavetrap-Based Decoupling Technique for 45° Polarized MIMO Antenna Arrays," in IEEE Transactions on Antennas and Propagation, vol. 68, no. 3, pp. 2148-2157, March 2020, doi: 10.1109/TAP.2019.2948531.


[16] Y. -M. Zhang, Q. -C. Ye, G. F. Pedersen and S. Zhang, "A Simple Decoupling Network With Filtering Response for Patch Antenna Arrays," in IEEE Transactions on Antennas and Propagation, vol. 69, no. 11, pp. 7427-7439, Nov. 2021, doi: 10.1109/TAP.2021.3070632.


[17] L. Zhao, L. K. Yeung and K. -L. Wu, "A novel second-order decoupling network for two-element compact antenna arrays," 2012 Asia Pacific Microwave Conference Proceedings, Kaohsiung, Taiwan, 2012, pp. 1172-1174, doi: 10.1109/APMC.2012.6421860.


[18] Q. X. Lai, Y. M. Pan, S. Y. Zheng and W. J. Yang, "Mutual Coupling Reduction in MIMO Microstrip Patch Array Using TM10 and TM02 Modes," in IEEE Transactions on Antennas and Propagation, vol. 69, no. 11, pp. 7562-7571, Nov. 2021, doi: 10.1109/TAP.2021.3090520.


[19] H. Lin, Q. Chen, Y. Ji, X. Yang, J. Wang and L. Ge, "Weak-Field-Based Self-Decoupling Patch Antennas," in IEEE Transactions on Antennas and Propagation, vol. 68, no. 6, pp. 4208-4217, June 2020, doi: 10.1109/TAP.2020.2970109.


[20] J. -F. Qian, S. Gao, B. Sanz-Izquierdo, H. Wang, H. Zhou and H. Xu, "Mutual Coupling Suppression Between Two Closely Placed Patch Antennas Using Higher-Order Modes," in IEEE Transactions on Antennas and Propagation, vol. 71, no. 6, pp. 4686-4694, June 2023, doi: 10.1109/TAP.2023.3264874.


[21] L. -L. Yang, X. -F. Wang, Y. -H. Ke, W. -W. Yang and J. -X. Chen, "Dielectric Patch Antenna Self-Decoupling by Proper Structural Parameters," in IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 7, pp. 1447-1451, July 2022, doi: 10.1109/LAWP.2022.3171198.


[22] M. Li, S. Tian, M. -C. Tang and L. Zhu, "A Compact Low-Profile Hybrid-Mode Patch Antenna With Intrinsically Combined Self-Decoupling and Filtering Properties," in IEEE Transactions on Antennas and Propagation, vol. 70, no. 2, pp. 1511-1516, Feb. 2022, doi: 10.1109/TAP.2021.3111638.


[23] L. Sun, Y. Li, Z. Zhang and H. Wang, "Antenna Decoupling by Common and Differential Modes Cancellation," in IEEE Transactions on Antennas and Propagation, vol. 69, no. 2, pp. 672-682, Feb. 2021, doi: 10.1109/TAP.2020.3009427.


[24] L. Sun, Y. Li and Z. Zhang, "Decoupling Between Extremely Closely Spaced Patch Antennas by Mode Cancellation Method," in IEEE Transactions on Antennas and Propagation, vol. 69, no. 6, pp. 3074-3083, June 2021, doi: 10.1109/TAP.2020.3030922.




End



   

几十年来,紧密排列的天线阵列中的互耦减少一直是研究的热点。随着对高增益天线需求的增加,阵列天线是大多数无线通信系统不可替代的解决方案。阵列天线通常是通过将天线放置在半波长的距离来构建的。为了使天线阵列小型化,有必要减小辐射器之间的间距。这增加了天线元件之间的耦合,导致阻抗和辐射性能差。这种性能的降低归因于表面波从一个天线元件传播到另一个天线单元,从而改变了电流分布。电流分布的改变降低了天线辐射效率。因此,在减小天线间距的情况下封装更多数量的天线总是引起研究兴趣。尽管这是几十年来的研究兴趣,但天线研究人员仍在寻找更优的解决方案,以提高封装密度,同时增强天线元件之间的隔离。




来源:灵境地平线
ACTMarcMAGNET天线布局ANSA通信Electric
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-08-04
最近编辑:3月前
周末--电磁仿真
博士 微波电磁波
获赞 22粉丝 15文章 163课程 0
点赞
收藏
作者推荐

磁学相关的会议以及SCI期刊汇总

磁学相关的会议以及SCI期刊众多,这些涵盖了磁学的各个领域,包括基础理论、应用技术、材料科学等。前言列举的会议和期刊仅为部分代表,实际上磁学相关的会议和SCI期刊还有很多。在选择时,应根据研究方向和论文质量来选择合适的发表平台。同时,也应注意期刊的审稿周期、影响因子等因素,以便更好地规划自己的研究工作。期刊会议Asshownbelow👇期刊汇总一、顶刊:nature,science等pysicalreview系列以及一些材料相关的期刊。二、IEEE的磁学学会:https://ieeemagnetics.org/包含下面三个期刊IEEETransactionsonMagneticsIEEEMagneticsLettersIEEEMagneticsSocietySectionofIEEEAccess三、包含磁学以及应用磁学相关领域的期刊1,MAGNETICRESONANCEIMAGING,0730-725X2,MAGNETICRESONANCEINMEDICINE,0740-31943,MAGNETICRESONANCEINCHEMISTRY,0749-15814,MagneticResonanceinMedicalSciences,1347-31825,MagneticResonanceImagingClinicsofNorthAmerica,1064-96896,MAGNETICRESONANCEMATERIALSINPHYSICSBIOLOGYANDMEDICINE,1352-86617,IEEEMagneticsLetters,1949-307X8,ELECTROMAGNETICS,0272-63439,ELECTROMAGNETICBIOLOGYANDMEDICINE,1536-837810,APPLIEDMAGNETICRESONANCE,0937-934711,BIOELECTROMAGNETICS,0197-846212,JournalofMagnetics,1226-175013,JOURNALOFMAGNETICRESONANCE,1090-780714,JOURNALOFMAGNETICRESONANCEIMAGING,1053-180715,CONCEPTSINMAGNETICRESONANCEPARTA,1546-608616,CONCEPTSINMAGNETICRESONANCEPARTB-MAGNETICRESONANCEENGINEERING,1552-503117,JOURNALOFELECTROMAGNETICWAVESANDAPPLICATIONS,0920-507118,JournalofElectromagneticEngineeringandScience,2671-725519,ProgressinElectromagneticsResearch-PIER,1070-469820,SOLIDSTATENUCLEARMAGNETICRESONANCE,0926-204021,PROGRESSINNUCLEARMAGNETICRESONANCESPECTROSCOPY(review),0079-656522,IEEETRANSACTIONSONMAGNETICS,0018-946423,JOURNALOFMAGNETISMANDMAGNETICMATERIALS,0304-885324,JOURNALOFCARDIOVASCULARMAGNETICRESONANCE,1097-664725,IEEETRANSACTIONSONELECTROMAGNETICCOMPATIBILITY,0018-937526,APPLIEDCOMPUTATIONALELECTROMAGNETICSSOCIETYJOURNAL,1054-488727,JOURNALOFMICROWAVEPOWERANDELECTROMAGNETICENERGY,0832-782328,INTERNATIONALJOURNALOFAPPLIEDELECTROMAGNETICSANDMECHANICS,1383-5416会议1、(InterMag)IEEEInternationalMagneticsConference2、(EMSA)EuropeanMagneticSensorsandActuators3、(MMM)AnnualConferenceonMagnetismandMagneticMaterials4、MAGNETICFRONTIERS5、(TMRC)TheMagneticRecordingConference等等……磁学相关的学术会议涵盖了从基础理论到应用技术的多个方面,为磁学领域的科研人员提供了广泛的交流平台。通过参加这些会议,研究者可以及时了解领域内的最新动态和研究成果,拓展研究思路和方法。End磁学(magnetism),又称为铁磁学(ferromagnetism),是现代物理学的一个重要分支。它主要研究磁、磁场、磁材料、磁效应、磁现象及其实际应用。随着科技的不断发展,磁学在材料科学、信息科学、生物医学等领域的应用前景越来越广阔。未来,磁学将继续深入研究磁的基本性质和磁材料的性质,探索新的磁效应和磁现象,以及这些研究在科技领域的应用。同时,随着纳米技术和量子技术的兴起,磁学也将迎来新的发展机遇和挑战。来源:灵境地平线

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈