随着电动汽车在全球范围内的大量普及,对于车辆续航和轻量化的需求与日俱增,如何在能量密度、安全、成本等因素之间取舍,从而得到竞价比较高的产品,是每一个电池厂商和主机厂不断思考的问题。自2000年至今,锂电池新的化学体系层出不穷,市场上应用最多的莫过于NCM、NCA和LFP体系,最近一两年还出现了成本较低的Na-ion和LFMP,未来甚至会采用锂金属的固态电池路线。今天就和大家分享一下不同化学体系的SWOT分析,看看到各种材料间的差距在哪里。
各化学体系性能对比
先来看一张对比汇总表。想要获得比目前NCM811-Gr和NCA-Gr更高的能量密度,变动最小的是在负极加入硅材料,但同时需要解决硅在循环过程中的膨胀问题,所以目前主流的负极硅材料占比基本控制在5%左右,未来可以从“可吸收膨胀力的极片”角度,结合复合集流体工艺,在聚合物中心层两面镀铜,保证导电性的同时,提高极片对材料膨胀的吸收作用。
从专利布局看,以宁德时代为代表的电池企业,在2018-2019年后复合集流体相关专利数量快速增长。大部分主流电池企业都在积极摸索,多数希望在未来一年打通制备工艺、滚焊等关键设备问题。
在下游应用端,据行业反馈动力电池领跑企业逐步完成技术路线和工艺的摸索,业内推测探路企业工艺装备接近或刚定型;而欧洲客户明年下半年逐步起量。此外在消费、储能领域,复合集流体的轻薄化、低成本(量产后)优势将比较显著,且消费领域的产品验证周期短于动力,也有望在明年启动初步量产。
OPPO在2021年7月发布会上,首次推出了夹心式安全电池并搭配65W闪充,电池中首次使用复合集流体技术。经测试,该技术使得夹心式安全电池可以做到100%通过针 刺与重物冲击实验,明显提高安全性能。ATL为OPPO等手机厂商的主要电池工艺商,且其在复合集流体技术布局上同样走在行业前列,从其专利应用图上推断,首先用在手机上的概率较大。
正极材料概览
正极对锂离子电池的重要性再怎么强调也不为过。正极负责在充电和放电循环期间存储和释放锂离子,使电子流动并确保稳定和一致的能量供应。然而,与其他电池组件相比,阴极面临着一些挑战,包括有限的储能容量,缓慢的离子扩散(特别是通过较厚的阴极)以及更高的成本(镍,钴,氢氧化锂/碳酸盐)。
正极在全球的主要厂商分布如下,可以看到LG化学是唯一一个在世界各地布局的电池公司。而特斯拉是唯一一家直接参与正极材料生产的主机厂,这也迎合了马斯克全产业链垂直整合的习惯,通过垂直整合缩减采购成本,同时也有效保证了供应链的安全。我国的正极材料公司多集中在亚太地区。
NMC vs LFP
2023年,镍锰钴(NMC)电池技术在能量密度、安全性和成本效益方面取得了进展。正在进行的研究旨在优化阴极成分,提高循环稳定性,并探索可持续材料。2023年,尖端的NMC电池研究集中在先进的阴极配方上,采用超高镍含量来提高能量密度。总的来说,最先进的NMC电池研究旨在突破性能、安全性和可持续性的界限。2023年,引领NMC电池生产的主要企业是宁德时代、LG能源解决方案、SK On、三星SDI等。
NCA vs NMC
2023年,镍钴铝(NCA)电池继续成为电动汽车和便携式电子产品的重要技术。在优化电极材料、提高能量密度、提高综合性能等方面取得进展。松下和三星SDI等主要厂商为NCA电池在各种应用中的进步和广泛应用做出了贡献。三星SDI是第一家为特斯拉提供电池的公司。NCA电池主要用于电动汽车,电动工具、电动自行车和便携式电子产品。
LCO vs NMC
锂钴氧化物电池(LCO)具有相对较高的钴含量,这为它们提供了高能量密度和热稳定性。LCO具有相对较高的电压能力。由于过去钴的成本,电动汽车行业早已从LCO转向。然而,智能手机、笔记本电脑和其他便携式电子产品严重依赖于LCO。
LFP vs NMC
在中国,磷酸铁锂(LFP)电池一直用于小型和低成本的电动汽车。然而,在过去的几年里,LFP已经扩散到最大的汽车上。目前,几乎所有主要汽车制造商都制定了利用LFP的计划。LFP也是能量存储系统中使用的主要化学物质。
LMFP vs LFP
与LFP相比,磷酸锰铁锂(LMFP)提供了更高的能量密度,同时保持了低成本结构。作为LFP的一种演变,它主要是由中国制造商开创的。最初的变异不是单纯的LMFP,而是与NMC复合。最初的优化决策涉及锰:铁的比例、生产路线(固相vs液相)和锰的化学原料。
从供应链和生产角度看,正极材料的资深玩家当升和容百已经入局,国内的主流电池厂商也各有开发计划,主机厂方面全球电动汽车销量前三的BYD、Tesla和Volkswagen都在投入。
LMO vs LFP
锂锰氧化物(LMO)是较早商业化的锂电池技术之一,具有成本效益和高功率输出的优势。然而,与LFP相比,LMO通常具有较低的循环寿命和热稳定性,而LFP以其优越的循环稳定性和安全性而闻名。LMO材料的最新发展趋势是NMC/LMO共混材料,它利用了NMC的高能量密度和LMO的增强功率能力。这种混合物适用于需要高容量和良好电力输送的应用,例如混合动力电动汽车或某些便携式电子产品。
锂的博弈
目前的市场条件要求更便宜的电池为电动汽车提供与现代NMC811电池相同的性能。
正极材料是电池成本的主要驱动因素,占成本的>~50%;
氢氧化锂(LiOH)或碳酸锂(Li2CO3)占正极材料成本的50%以上,不包括加工/开销;
为了使电动汽车更便宜,LFP是获得每千瓦时最低锂成本的近期解决方案;
除了LFP,制造商还需要转向先进的化学物质,如锂硫(Li-S),以维持成本提升性能的下降趋势;
(未完待续)