隔膜材料概览
锂离子电池隔膜将正负极物理分离,同时允许锂离子的传输。最常用的锂离子电池隔膜通常是由涂有陶瓷的聚烯烃材料(通常是PE或PP)制成的。锂离子电池中还有许多其他不同类型的隔膜,它们具有不同的性能特征和权衡,大致分类如下。
负极材料概览
锂离子电池负极材料的选择是一个关键的决定,它取决于应用的具体要求,并对电池的整体性能、安全性和成本效益产生重大影响。石墨是可靠且具有成本效益的选择,而硅和锂金属提供更高的能量密度,但面临稳定性和安全性方面的挑战。LTO虽然能量密度较低,但在安全性和循环寿命方面表现优异。选择阳极材料时要考虑如下几个因素:能量密度,循环寿命,成本,安全,倍率性能,正极兼容性,可制造性和环境影响。
常用负极材料和性能权衡
由于其稳定性、成本效益和完善的制造工艺,石墨一直是传统的选择。硅具有比石墨更高的能量密度,但存在与体积膨胀相关的挑战。LTO的能量密度较低,但循环寿命较长。锂金属具有最高的能量密度,但在安全性和循环寿命方面存在挑战,通常是由于枝晶的形成。
硅负极
硅基材料可以提供能量密度的巨大改进,因为1个硅原子可以容纳4个锂原子(相比之下,现有的石墨需要6个碳原子才能容纳1个锂原子)。硅的理论容量为3600毫安时/克,而石墨的理论容量为372毫安时/克。
缺点包括在Li合金化/脱合金中体积膨胀(300-400%)。这可以通过过量的硅暴露导致固体电解质间相(SEI)的发展,并可以分解整个阳极。因此,制造硅主导阳极一直具有挑战性,通常只使用少量(3-8%)。
下图展示了2023年度硅负极的相关“大事件”,其中Amprius Technologies是一家总部位于美国弗里蒙特的锂电池公司,该公司不断探索改进电池技术和制造工艺的新方法,开发出的电池比标准锂离子电池的能量密度高100%,在数百次循环中达到了450 Wh/kg的性能突破。更多详细的信息,笔者会在后期的专栏《企示录》中介绍,欢迎持续关注。
硅负极还受到了硅谷初创公司们的关注,他们继续与行业参与者建立合作伙伴关系。这些合作关系中也能看到国内CATL和EVE的身影。
LTO vs Graphite
虽然石墨负极广泛用于锂离子电池,但LTO是一种替代方案,特别是在优先考虑安全性、耐用性、快速充电和功率密度而不是能量密度的应用中。LTO因其高功率密度而广泛应用于轻度混合动力汽车。
LTO的主要玩家多来自亚洲和美国,其中A123系统是万向集团的子公司,一直致力于开发各种应用的锂离子电池。他们已经在某些电池产品中使用了LTO技术,特别是在高功率应用中。
Lithium metal vs Graphite
锂金属负极的最大优势在于能量密度,循环性能和安全仍有改善空间,由于目前的成本仍处于高位,实际应用仅包括航空、国防、无人机等特定场景。
目前关于锂金属的技术储备相对比较激烈,除了传统的原材料厂商,中游的电池厂和下游的整车厂也纷纷入局,包括Solid Power、通用、斯特兰蒂斯和大众。
目前研发进度比较靠前的公司有QuantumScape、Cuberg等,其中QuantumScape主攻金属氧化物正极-固态电解质-锂金属负极的化学体系,已经积累了300篇以上的专利,融资超过8亿美元,关于该公司的详细信息,请参考企示录:QuantumScape。
(未完待续)