在锂离子电池的负极中,通常会添加诸如炭黑之类的导电添加剂来提高电极的电子导电性,并添加诸如PVDF之类的粘合剂来帮助保持颗粒之间的接触。在描述锂离子电池的部件时,通常不会提到这些非活性成分,因为它们不参与充放电操作。然而,它们对电池的正常功能至关重要,因此在设计电池时要非常小心,以达到电极中非活性材料与活性材料的良好比例。下图4展示出电极的结构,包括涂覆颗粒的粘结剂和导电添加剂。
当电极中的活性材料锂化和减薄时,导致变形的应力会导致粘结剂失效,导致石墨颗粒之间、颗粒与集流体之间、粘结剂与颗粒之间以及粘结剂与集流体之间的机械和电子接触损失。这导致更高的电池电阻,因为更少的途径可供电子流过电极矩阵。如果粒子与电流收集器完全断开电子连接,也会导致容量损失。
电极的孔隙率会通过体积变化和SEI层的演化而降低,SEI层生长到通常由电解质占据的空间中。这阻碍了锂离子通过电解质的运动,增加了电池电阻。
如果电池过放电,其石墨材料的开路电位会增加到负极集流体中的铜腐蚀的程度,将Cu2+释放到电解质中。这有几个后果。首先,集热体/电极接触减少,从而导致更高的电池电阻。其次,沉积在电极颗粒上的腐蚀产物具有较差的电子导电性,这增加了SEI膜电阻,从而增加了整体电池电阻。第三,腐蚀的集流体具有不均匀的电阻,这可能导致整个电池极板区域的电流和电位分布不均匀,导致电池部分加速老化,并倾向于析锂。最后,在负极颗粒上析铜也会促进锂枝晶的生长,从而导致短路。
负极老化机制如下表所示。我们特别注意到,一些机制主要导致功率衰退,而另一些机制主要导致容量衰退。因此,电池电阻和总容量的变化不一定成正比,这取决于电池的老化程度。
与负极一样,老化发生在正极的三个位置:颗粒表面、活性物质颗粒本身内部和大块正极。我们将在接下来的小节中讨论这些机制。
研究人员发现,在正极上,活性物质颗粒的表面也能生长出一层薄膜。在某种程度上,这是由于电解质中的溶剂和正极活性材料之间的化学反应;然而,这种机制并不像在负极中那样明显。
一个更大的因素是电极晶体结构中的金属溶解到电解质中,这些金属形成的产物可以再沉淀到颗粒表面,形成高电阻膜。电解质中的氢氟酸加速了这种溶解,微量的水与LiPF6盐结合引发了这种溶解。
酸侵蚀导致的金属溶解是锂-锰氧化物电池容量损失的主要原因,因为锰的损失破坏了晶体结构并消除了锂的存储位置。锂钴氧化物电池也会因钴的损失而失去容量,但速度较慢。实际的机制取决于正极中使用的氧化物,但往往主要发生在低或高的电池电荷状态,并且可以通过高温和任何可能溶解在电解质中的HF酸大大加速。
当锂嵌入或从正极活性粒子中脱插时,应力会引起称为相变的应变,这种应变会扭曲电极材料的晶体结构形状,而不会改变其整体结构本身。相变是由锂的存在或不存在引起的,导致不同的局部分子力。其中一些相变是正常的和可逆的,但另一些相变会导致电极结构的坍塌和容量的快速下降,这是由于锂存储位置的损失。当电池过度充电时,这是最常见的:从正极移除过多的锂,导致锂通道坍塌。
这些循环应力也会导致一种被称为结构无序的现象,即电极材料的晶体结构被破坏。晶体中原子之间的化学键被打破,然后重新形成不同的原子。这会破坏允许锂移动的隧道状结构,导致锂被困在晶体结构中,也会失去锂的储存位置。这两种影响都会降低电池的总容量。
(未完待续)