应变能和余能
最小余能原理
最小余能原理与最小势能原理的基本区别如下:最小势能原理对应于结构的平衡条件,而最小余能原理对应于结构的变形协调条件。最小势能原理以位移为变化量,最小余能原理以力为变化量。
在单元分析中,假定单元的位移函数,由最小势能原理可求出单元刚度矩阵,如果假定单元的应力状态,由最小余能原理可求出单元柔度矩阵,下面加以说明。
设单元应力 可用结点力 表示如下:
上式在单元边界上的取值即为单元的边界力 ,记为
必须指出,除了杆单元和梁单元,对于一般的连续介质,要像式(1)那样用结点力表示单元内部应力是很困难的,把式(1)和式(2)代入余能计算式
得到
其中,
根据最小余能原理有
(3)代入(6)得
式(7)用于结构的整体分析,即所谓矩阵力法。先选择赘余力,再根据变形协调条件建立以结点力为未知量的方程组,即可解出结点力。矩阵力法在计算机上的实现远比矩阵位移法困难,所以采用较少。按最小余能原理求解时,所假设的应力场在单元内部应满足平衡方程,在相邻单元的公共边界上应力不必连续,但应满足平衡条件,这种单元称为平衡单元,求解时的未知量是结点力。