流体力学是一门涉及静止或运动状态流体行为的学科,流体力学属于力学的一个分支,主要研究在各种力的作用下,流体本身的静止状态和运动状态以及流体和固体界壁间有相对运动时的相互作用和流动规律。应用领域非常广泛,包括但不限于工程、能源、环境、科研和教育等,地球上几乎所有的东西都被流体包围,机械操作受流体影响。流体力学是机械工程中最基本的学科,与静力学、动力学、材料、力学、热力学一起,流体力学和热力学也有很多共同点。
牛顿发现苹果从树上掉下来是因为万有引力定律,万有引力定律指出,任何两个物体之间都存在相互吸引的力,这个力的大小与各个物体的质量成正比,而与它们之间的距离的平方成反比,就像水从上到下流动一样,这些规律是自然的道理和法则。
1.质量守恒定律
质量不会凭空消失或产生,质量守恒始终得到保持。在流体的运动过程中,质量守恒定律被表述为流体的流入与流出质量相等。即在单位时间内,通过控制体表面流入或流出的质量相等,从而实现了质量守恒。
2.牛顿第二运动定律(线性定律)
3.角动量守恒定律
4.热力学第一定律(能量守恒定律)
5.热力学第二定律(熵增定律)
有两种解释流体流动的方法:拉格朗日技术和欧拉技术。
拉格朗日法(Lagrange description)
又称随体法,跟踪法,拉格朗日法以某一个流体质点的运动作为研究对象,观察这一质点在流场中由一点移动到另一点时,其运动参数的变化规律,并综合众多流体质点的运动来获得一定空间内所有流体质点的运动规律。也可以用粒子技术的方法来表示,假设流体由许多粒子组成,逐一跟踪每个粒子的运动。从分析的角度来看,逐一跟踪的方法有点效率低下。
与拉格朗日法区别,用场(field)技术的方法来表示,而不是追踪每个流体粒子,以空间为基准观察流体离开,计算进入或离开基准空间的流体量。
假设流体是连续体(continuum),可以非常方便地解决问题,在分析中
在感兴趣的边界上设置条件,如入口/出口/壁面。
计算流体力学
计算流体力学(Computational Fluid Dynamics,CFD)通过计算机基于流体力学理论预测流体流动。
通过CFD分析,可以查看分析区域内的所有节点(node)计算的信息,可以一眼掌握像空气一样无色无味的气体从哪里流向哪里、速度有多快等。 对于高温高压的情况或有毒物质,在实验环境下可能有危险,但CFD分析,可以在安全的环境下进行工程预测。
为了预测流体的行为,有理论上的方法,也可以考虑通过实验的方法,但为了通过理论进行预测,必须了解纳维-斯托克斯方程(Navier Stokes Equation),该方程被登记为世界7大难题,如果没有各种特殊的假设,就无法精确求解(exact solution),因此可以应用各种数值方法,通过计算机计算来求近似解(approxide solution),midas NFX CFD使用有限元法(FEM;Finite Element Method)
在分析过程中,将根据情况对流体的特性进行分类,去除不必要的变数,快速、简单地解决问题的方法。例如有压缩性、非压缩性、层流、湍流、粘性、非粘性、稳态、瞬态等分类