2. 1无基准轮廓度的拟合方法
首先,给定理论型面的初始平移值(Δx、Δy)和旋转 角度Δθ默认初始值为零,如果扫描数据点与理论型面偏差较大,也可手工给定初始值。然后,对理论型面进行平移和旋转,并逐个计算扫描数据点距移动后理论型面的最小距di并剔除粗大误差点。其次,利用改进后的Levenberg-Marquardt算法迭代求解理论型面对扫描数据点的最小二乘拟合值。最后,评价扫描数据并输出评价结果。
2. 2复杂型面的拟合过程
(1)点到理论型面的最小距离:常用的几何图形一般是由直线、圆弧和三次样条曲线组合而成,因此点到理论型面的最小距离计算可以转化为求解点到基本几何元素的最小距离。①点到直线距离利用三角形面积计算公式计算扫描数据点到直线的最小距离,公式如下。其中( xi、yi)为数据点坐标、( x1、y1)为直线段起点坐标、(x2 、y2)为直线段终点坐标。
②点到圆弧距离扫描数据点到圆弧的最小距离计算公式如下,其中( xi、yi)为数据点坐标、(x0、y0)为圆心坐标、r为半径,式中正负号凸圆弧取正、凹圆弧取负。
③点到三次样条曲线距离为了处理方便将三次样条函数表示为参数形式如下:
扫描数据点到三次样条曲线的距离公式如下:
利用牛顿迭代法可以求得 di( t)的最小值,即扫描数据点到三次样条曲线的最小距离。
(2)优化算法 Levenberg-Marquardt 算法是使用最广泛的非线性最小二乘算法,它是利用梯度求最大(小)值的算法,形象的说属于“爬山”法的一种。它同时具有梯度法和牛顿法的优点。程序的迭代过程是寻找使得目标函数值 f =∑d2i最小的参数向量{Δx,Δy,Δθ}。
(3)3σ准则对大量三坐标扫描得到的数据进行分析处理时,适当地应用3σ准则,可以有效地判别并剔除粗大误差。本程序中采用了3σ准则来进行粗大误差的判别和剔除,实际应用表明,算法运行稳定可靠,可使得最终得到的测量结果更真实、更准确,适合在易产生粗大误差的检测环境中采用。