首页/文章/ 详情

玻璃碎了,我们从特斯拉的全铝车身生产视频中也能学到不少!

4月前浏览4026

美国电动车大厂特斯拉(Tesla)21日在加州发表全新电动皮卡车Cybertruck,充满未来感的外型搭配现场戏剧效果十足的影片,震撼至极。关键是当强调这辆新车的安全玻璃牢不可破时,现场人员当场在展示会场上就来示范用金属球砸车窗,正当现场观众快信的时候,咣当......,玻璃碎了!这段插曲也让特斯拉创办人马斯克当场飙了句:(Oh my f—ing god)。



而小编认为学习者就要看到别人的闪光点,正如人家的全铝车身的研制与生产,值得我们一看,有图有视频,您往下看!


据相关数据分析:如果汽车整车重量降低10%,燃油效率可提高6%至8%;汽车整车质量每减少100公斤,百公里油耗可降低0.3至0.6升。以铝代替传统的钢铁制造汽车,可使整车重量减轻30%至40%。



特斯拉研发制造的Model S整辆车包含了250项专利。其全铝车身兼顾了轻量化与高强度特性,除了车身外,其前后悬架大部分材料也采用铝材。从制造的角度看,这款车的生产方式与其他汽车有着根本不同。通过以下特斯拉工厂真实生产视频,您将详细了解Model S汽车从原材料的选用、冲压、焊装、涂装到总装的生产过程!


由于铝合金材料对热较敏感,如果采用传统焊接工艺,会存在材料强度下降的问题,而且由于受热易变形,全铝车身拼合尺寸精度也不易控制。那么,特斯拉工厂是如何克服铝合金焊接过程的难点的呢?


特斯拉工厂的焊接工艺选择的是CMT冷金属过渡技术及DeltaSpot电阻点焊技术。



2005年,奥地利伏能士推出了CMT(Cold metal Transfer)冷金属过渡技术,该技术在世界上首次实现了钢和铝的连接,和传统的MIG/MAG焊接相比,CMT工艺是“冷过渡”。而DeltaSpot电阻点焊工艺是针对铝焊而开发的新技术,它具有极高的工艺可靠性,每个电阻焊点均可达到100%的重复精度:母材和电极受到电极带保护,电极带在电极和需要接合的母材之间运动从而实现连续的焊接过程,确保在多个班制中保持恒定的质量水平。


——————END——————




免责申明:本资料来自于网络收集,仅用于学习交流,如有侵权,请及时联系我们。



来源:公差通
汽车焊接材料控制工厂META
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-06-28
最近编辑:4月前
公差通
签名征集中
获赞 5粉丝 14文章 158课程 0
点赞
收藏
作者推荐

25张图直观看懂从石英砂到芯片全过程

现代生活中,人们已被各种电子设备围绕,手机、电脑、电视……那么,这些电子设备是靠什么运作的呢?答案就是芯片!简单来说,芯片之于电子设备的地位等同于发动机之于汽车,而制备芯片的原材料,就是最普通不过的石英砂。下面,我们就来看一看,石英砂是怎么变成芯片的?1.石英砂硅是地壳内第二丰富的元素,而脱氧后的沙子(尤其是石英)最多包含25%的硅元素,以二氧化硅(SiO2)的形式存在,这也是半导体制造产业的基础。2.硅熔炼12英寸/300毫米晶圆级,通过多步净化得到可用于半导体知道质量的硅,学名电子级硅(EGS),平均每一百万个硅原子中最多只有一个杂质原子。下图展示的是如何通过硅净化熔炼得到大晶体的,最后得到的就是硅锭(ingot)。3.单晶硅锭整体基本呈圆柱形,重约100千克,硅纯度 99.9999%。4.硅锭切割横向切割成圆形的单个硅片,也就是我们常说的晶圆 (Wafer)。顺便说,这下知道为什么晶圆都是圆形的了吧?5.晶圆切割出的是晶圆经过抛光后变得几乎完美无瑕,表面甚至可以当镜子。事实上,intel自己并不生产这种晶圆,而是从第三方半导体企业那里直接购买成品,然后利用直接的生产线进一步加工,比如现在主流的45nm HKMG(高K金属柵极)。值得一提的是,intel公司创立之初使用的晶圆尺寸只有2英寸/50毫米。6.光刻胶(Photo Resist)下图中蓝色部分就是在晶圆旋转过程中浇上去的光刻胶液体,类似制作传统胶片的那种。晶圆旋转可以让光刻胶铺的非常薄、非常平。光刻一:光刻胶层随后透过掩模(Mask)被曝光在紫外线(UV)之下,变得可溶,期间发生的化学反应类似按下机械相机快门那一刻胶片的变化。掩模上印着预 先设计好的电路图案,紫外线透过它照在光刻胶层上,就会形成微处理器的每一层电路图案。一般来说,在晶圆上得到的电路图案是掩模上图案的四分之一。光刻二:由此进入纳米尺寸的晶体管级别。一块晶圆上可以切割出数百个处理器,不过从这里开始把视野缩小到其中一个上,展示如何制作晶体管等部件。晶体管相当于开关,控制着电流的方向。现在的晶体管已经如此之小,一个针头上就能放下大约3000万个。7.溶解光刻胶光刻过程中曝光在紫外线下的光刻胶被溶解掉,清除后留下的图案和掩模上的一致。8.蚀刻使用化学物质溶解掉暴露出来的晶圆部分,而剩下的光刻胶保护着不应该蚀刻的部分。9.清除光刻胶蚀刻完成后,光刻胶的使命宣告完成,全部清除后就可以看到设计好的电路图案。10.光刻胶再次浇上光刻胶(蓝色部分),然后光刻,并洗掉曝光的部分,剩下的光刻胶还是用来保护不会离子注入的那部分材料。11.离子注入(ion implantation)在真空系统中,用经过加速的,要掺杂的院子的离子照射(注入)固体材料,从而在被注入的区域形成特殊的注入层,并改变这些区域的硅的导电性。经过电场加速后,注入的离子流的速度可以超过30万千米每小时。12.清除光刻胶离子注入完成后,光刻胶也被清除,而注入区域(绿色部分)也已掺杂,注入了不同的原子。注意这时候的绿色和之前已经有所不同。13.晶体管就绪至此,晶体管已经基本完成。在绝缘材(品红色)上蚀刻出三个孔洞,并填充铜,以便和其它晶体管互连。14.电镀在晶圆上电镀一层硫酸铜,将铜离子沉淀到晶体管上。铜离子会从正极走向负极。15.铜层电镀完成后,铜离子沉积在晶圆表面,形成一个薄薄的铜层。16.抛光将多余的铜抛光掉,也就是磨光晶圆表面。17.金属层晶体管级别,留个晶体管的组合,大约500纳米。在不同晶体管之间形成复合互连金属层,具体布局取决于相应处理器所需要的不同功能性。芯片表面看起来异常平滑,但事实上可能包含20多层复杂的电路,放大之后可以看到极其复杂的电路网络,形如未来派的多层高速公路系统。18.晶圆测试内核级别,大约10毫米/0.5英寸。图中是晶圆的局部,正在接受第一次功能性测试,使用参考电路图案和每一块芯片进行对比。19.晶圆切片(Slicing)晶圆级别,300毫米/12英寸。将晶圆切割成块,每一块就是一个处理器的内核(Die)。20.丢弃瑕疵内核晶圆级别。测试过程中发现的有瑕疵的内核被抛弃,留下完好的准备进入下一步。21.单个内核内核级别。从晶圆上切割下来的单个内核,这里展示的是Core i7的核心。22.封装封装级别,20毫米/1英寸。衬底、内核、散热片堆叠在一起,就形成了我们看到的处理器的样子。衬底相当于一个底座,并为处理器内核提供电气与机械界面,便于与PC系统的其它部分交互。散热片就是负责内核散热的了。23.处理器至此就得到完整的处理器了(这里是一颗Core i7)。这种在世界上最干净的房间里制造出来的最复杂的产品实际上是经过数百个步骤得来的,这里只是展示了其中的一些关键步骤。24.等级测试最后一次测试,可以鉴别出每一颗处理器的关键特性,比如最高频率、功耗、发热量等,并决定处理器的等级,比如适合做成最高端的Core i7-975 Extreme,还是低端型号Core i7-920。25.装箱根据等级测试结果将同样级别的处理器放在一起装运。制造、测试完毕的处理器要么批量交付给OEM厂商,要么放在包装盒里进入零售市场。来源:中国粉体技术网来源:公差通

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈