比较器,具有两个模拟电压输入端UIN+和UIN-,一个数字状态输出端UOUT,输出端只有两种状态,用以表示两个输入端电位的高低关系:
UH代表高电平,UL代表低电平,具体的电位值,取决于系统的定义。常见的数字系统中,3.3V代表高电平,0V代表低电平;也有12V/5V代表高电平,0V代表低电平。
高低电平的本质:可以明显区分的电位。
实现比较器的方法:
专门的比较器
运放实现比较器(不推荐)
用运放实现比较器
用运放实现比较器,局限性较大,一般不被建议,在要求不高的场合,运放可作为比较器。
简单的运放比较器
作比较器应用时,一般都是将一个输入端接成固定电位,称为基准,用UREF表示,用另一个输入端接被测电位uI,用于衡量被测电位与基准的关系。
该图为理想运放与其输入输出关系。图中输出只有两种状态:UH和UL。
用运放实现的比较器,具有极高的开环增益(不是工作在负反馈状态下):
当输入电压大于基准电压时,两者的差乘以开环增益,一般都会超过正电源电压,而使实际运放输出为正电源电压(轨对轨运放)。
当输入电压小于基准电压时,两者的差(负值)乘以开环增益,一般都会低于负电源电压,而使运放的实际输出为负电源电压。
实际比较器
该曲线中的红色虚线区域为比较器的不灵敏区。发生在输入电压非常接近基准电压时,输出是一个不确定的值。理想运放组成的比较器,不灵敏区为0.
这里有个思考的问题:不灵敏区越小越好或者说比较器越灵敏越好吗?
对于一个过于灵敏的比较器,往往会给系统带来麻烦。因为日常生活的输入信号,它并不是一个理想的信号,它是包含噪声信号的。
将图中蓝色 区域展开,可发现:对于一个非常灵敏的比较器, 噪声信号是波动的,经常会在某个点低于基准点,从而使比较器发生翻转。这就形成了有点所示的很多较小时间的脉冲。而这往往是不准确的。
举个例子:生活中有些场所是有人员限制的,在进出口安装红外发生器和接收器,一旦有人经过就产生一个脉冲,但是给与比较器判断的信号是有干扰的,如果明明进去一个人,但是像右图所示产生了7个脉冲,判断有7个人进去了,这是不准确的。我们可以通过软件编程的方式判断脉冲的时间,过小的时间不可能进去一个人,从而剔除干扰信号;也可以在模拟电路阶段采取迟滞比较的方式来剔除。
如果把基准电压从单个变成两个呢?只有一个基准电压,称为单门限比较器;
如图所示:两个黄线表示两个基准电压,可以看出右边黄线区间内的噪声信号被滤除了,虽然这种情况还是存在噪声干扰,但是明显比单门限好得多。这两个基准电压越接近,效果就越接近单门限的效果。
原理:
随着输入电压逐渐增大,工作点沿着红色线一直向右移动, 到达B点,输入电压大于kVCC,此时运放的正输入端电压小于负输入端电压,输出变为-VEE,即从B点处红色跌落。此时,比较基准立即改变:由原先的kVCC变为-kVEE。这就表示:此时就算输入电压发生轻微的逆向翻转,比较器也不翻转。
图中:假设从A开始,到B点翻转,到C点,红色线一直向右,然后以绿色线回转到达kVCC处,比较器不翻转,沿着绿色线一直到D点,才回到A点(重新回到高电平)。
拓展:
这个比较器的输出状态,不仅仅与输入状态相关,还与当前的输出状态有关,使得输入输出伏安特性曲线,呈现出类似迟滞回线的形态,因此称为迟滞比较器。
迟滞比较器看起来比较迟钝,但是带来的好处是:只有明确的、强有力的输入,才能引起输出改变,而一旦改变,想要恢复,也得特别厉害的反向动作。
前面提到的只是迟滞比较器的一种,它的伏安特性曲线是顺时针旋转的,且它的两个阈值电压是基于0V对称的。
当接入一个基准电压UREF这就是更为常用的比较器。
分析:
假设运放输出高电平为UOH(对理想运放来说,此值为VCC),输出低电平为UOL,那么对输入信号,电路有两个比较翻转点,较大的一个称为UR+,较小的称为UR-。
设正反馈系数为k,k值越接近于1,说明反馈越强烈,迟滞窗口越宽:
拓展:
合理的选择电路结构,选择电阻值,可以做出符合设计要求的迟滞比较器:可改变顺逆结构,可以改变中心阈值,可以改变阈值窗口电压。
叠加原理分析
过零比较器
信号源VG1上叠加一个噪声源VG2:
波形如下:
过零点展开:
加入迟滞:
波形如下:
过零点展开:
特点(缺点)
运放的输出取决于供电电压,与数字电平不一定匹配。
运放存在严重的过驱恢复时间,不利于高速运行。
运放灵敏度过高。
LM311/LM111数据手册
TINA-TI仿真
波形: