供输弹系统是大口径自行火炮实现爆发射速和持续射速的关键辅助系统,其性能好坏、可靠性高低直接关系到在严酷的战争环境下自行火炮能否有效发扬火力。供输弹系统是集机电液一体化的复杂系统,其动力学涉及机、电、液等领域的耦合。在建立其动力学模型时必须充分考虑机电液系统之间的耦合效应,建立完整的包括机、电、液在内的闭环模型,从而提高求解精度,真正满足实时动态仿真的需求。
供输弹系统工作过程受多种随机参数的影响,其动力学响应是一个随机过程。基于确定参数的动力学分析得到的计算结果仅仅是随机响应中的一个元素,难以全面描述供输弹系统的动力学特性。并且由参数随机性引起的机构动作可靠性问题也无法得到阐释。从调研结果来看,供输弹系统的故障多数并不是由零部件的失效引起的,往往是由于供输弹系统的输出指标达不到规定要求而导致的系统工作循环终止,属于机构动作可靠性的范畴。因而,研究考虑参数随机性的供输弹系统动力学不仅是全面掌握其动力学特性的有效途径而且对研究系统动作可靠性具有很重要的现实意义。
2.1 供输弹系统工作过程
供输弹系统可以完成0°~65°任意角装填,输弹过程为2级输弹。1级输弹时,双联泵大泵单独供油,马达经齿轮传动带动链轮驱动链条推送弹丸,并通过挂钩带动推壳小车一起运动;当推壳小车运动到限位槽后与链条脱钩完成排壳;当链条伸出一定长度后,电磁阀控制双泵供油,开始2级输弹;输弹到位后,电磁阀控制马达反转将链条收回;当链条快回收到位时,小泵单泵供油完成收链。
2.2 机电液耦合动力学模型的建立
利用MSC.Adams和Easy5仿真平台构建供输弹系统机电液耦合动力学模型,其联合仿真结构如图1 所示。图中x、x别为链条位移和速度,用于在MSC.Easy5 中建立控制方程; MAdams为链轮驱动力矩,通过函数Varval(MEasy5)将液压系统中马达输出力矩MEasy5赋予MAdams;θ为链轮转速,用于在MSC.Easy5 中建立压力和流量方程; pin、Qin和pout、Qout分别为液压马达进出口压力和流量。
供输弹系统的拓扑结构如图2 所示。H1为固定铰,H3为齿轮箱输出轴与链轮间也联轴器连接,简化为固定铰,H2、H7、Hc1、Hc5、Hc6为旋转铰,H4、H5、H6、H8、H9、H10、H11、Hc2、Hc4为非完整约束。
模型中通过定义碰撞铰进行非完整约束的定义,Hc3为平移铰。对往复推送式输弹链条B4进行了详细的建模,其共有链节45个,滚子45个,1个链头。链节间采用旋转铰,链节滚子与链轮及链条箱隔板间通过碰撞铰实现力的传递和自由度的约束。
完成拓扑结构的定义后,MSC.Adams 应用带乘子的拉格朗日方法自动建立系统动力学方程并将碰撞铰以等效接触力形式引入方程,则供输弹系统的动力学方程可表示为
式中: q 为系统广义坐标列阵; M,Φq,Q 分别为系统的广义质量阵、约束方程Φ( q,t) = 0 的雅克比阵及广义力阵; Fg为接触力F相对于广义坐标q 的广义力列阵,采用基于impact 函数的实体碰撞接触模型计算。
3.1 参数的随机性
在可靠性分析计算时通常将随机变量认为是服从理想分布,即其变量取值范围( -∞,+∞) 或( 0,+ ∞) ,这显然不符合工程实际,而用两端截尾分布来描述工程实际中的随机变量则更为合理。各随机变量分布规律及其分布参数的确定最可靠的方式是针对具体参数进行专项实验,对所得大量数据进行统计处理,分析其分布规律,确定其分布参数。然而,在实际中上述方式很难办到,只能通过已有数据或类似的情况得到近似的分布特性及参数,也不乏分布规律难以确定的情况。而且还有一些随机因素不易进行试验,如对生产使用情况的估计、人的因素等,这时只能加入一些主观估计。
表2为所研究的5个随机参数的分布特征,均假设服从正态分布,分别为液压油温T(℃) 、调压阀调定压力p(MPa) 、大泵环形泄漏间隙hbp(mm) 、小泵环形泄漏间隙hsp(mm) 和马达环形泄漏间隙hmo(mm).
3.2 动力学响应的随机性
由MCS 随机抽样产生100个样本的试验空间,通过供输弹系统机电液耦合动力学模型进行100次动力学求解,可以得到SVM 的训练样本。为清晰显示曲线簇的变化情况,图5和图6仅给出60°装填角条件下输弹过程随机动力学响应。
从仿真结果来看,由于链传动固有的多边形效应和啮合冲击导致链条速度的周期性波动,同时引起液压系统压力和流量的波动,图中曲线的波动正是耦合作用的体现。
由于1级输弹行程较长,所以hbp对输弹收链总时间影响较大;2 级输弹主要是提高输弹链卡膛点速度,所以hsm对输弹链卡膛点速度影响明显;hmo对两者都有显著影响。T会影响液压油的密度、动力粘度等基本属性进而影响执行元件的泄漏量和粘性阻尼力,对输弹链卡膛点速度及输弹收链总时间有较大影响。p 对系统所能达到的最大工作压力有影响,主要体现在1 级、2 级输弹起始阶段,对两次加速过程有影响。从图中可以看出当考虑参数的随机性后,供输弹系统动力学表现出明显的随机性。
从图7 可以看到,输弹链卡膛点速度vklt在正态分布概率试纸上概略成呈线性,并结合分布直方图可以初步确定其服从正态分布。分别按照正态分布、对数正态分布、威布尔分布应用K-S 检验法进行假设检验。通过对各种检验结果的分析和比较,发现vklt在α= 1% 显著水平下,只有假定其服从正态分布时才能通过K-S 检验。
对vklt进行参数估计可得: vklt ~ N ( 3.31,0.1492 ) .截尾点可通过在随机变量极限状态下的确定性仿真得到: vklt[1.78,3. 87]m/s.计算得正规化系数Kv= 0.999 914 5,则其概率密度函数可表示为
机构动作可靠性是指机构在规定的使用条件下,在规定的使用时间内,精确、及时、协调地完成规定动作(运动)的能力,用概率表示就是机构动作可靠度。它强调了机构动作在几何空间中运动的精确度,在时间域内的精确性,以及机构间在几何空间、时间域上的协调性、同步性要求。
4. 1 动作可靠性模型
设机构由使用要求确定的性能输出参数为yk( k = 1,2,3,…,s),它是随机变量x1,x2,x3,…,xn的函数,故yk也是随机变量,有y = F( x1,x2,x3,…,xn) .又设机构性能输出参数的允许极限值为Yk( k = 1,2,3,…,s ) .当定义yk≤Yk事件为机构动作可靠时,则有
式中: Rk为机构第k项性能输出参数达到规定要求的可靠度。
供输弹系统工作的主要参数指标为输弹链卡膛点最小速度要求vmin,klt和工作总时间ttot当vmin,klt小于或ttot大于一定值之后判定系统出现功能故障,而实际上vmin,klt和ttot是相关的,并且系统对vmin,klt的要求是确定性的: vklt≥3. 0 m/s.已知输弹链卡膛点速度服从两端截尾正态分布,则其可靠度为
考虑随机参数漂移主要基于2点: 1) 随机参数的估计有一定偏差; 2) 随着服役时间变长,运转过程中的摩擦磨损等原因使得双联泵及马达性能劣化,即hbp、hsm和hmo三个随机变量的分布中心发生漂移,这一劣化过程是不可避免的,势必引起机构动作可靠度的降低。假设其分布形态不发生变化,只是分布均值发生漂移μ+Δμ,如图8所示。而T和P两随机参数的分布不变。
图9为3个随机参数均值漂移前后输弹链卡膛点速度的概率密度函数。从图中可以看出,在同样的随机环境和工作参数下,随着机构本身性能参数的劣化,系统响应的分布形式并没有发生变化,仍服从两端截尾正态分布,但分布均值减小、方差增大,供输弹系统的动作可靠度显著降低。
本文采用基于软件接口的协同仿真策略,利用MSC.Adams和Easy5仿真平台对供输弹系统机电液耦合系统进行了动力学模型的构建和求解。由于目前在进行针对于仿真模型验证的专门实验上条件仍不具备,因而在进行VV&A 验证时不能提供有力的数据佐证,这也是本文的一大缺憾。
针对利用MCS 法求解复杂结构系统随机动力学问题时计算量过于庞大的难点问题,提出了VPMCS-SVM 随机动力学求解方法,有效地解决了求解精度和求解效率的矛盾。结合统计分析理论对供输弹系统的动作可靠性及随机参数漂移时的动作可靠度问题进行了研究。文章所采用的分析方法可为复杂系统的动力学分析和动作可靠性分析提供借鉴。